@article{NeuvonenNeuvonenKochetal.2012, author = {Neuvonen, Kari and Neuvonen, Helmi and Koch, Andreas and Kleinpeter, Erich}, title = {Taft equation in the light of NBO computations introduction of a novel polar computational substituent constant scale sigma(q)* for alkyl groups}, series = {Computational and theoretical chemistry}, volume = {981}, journal = {Computational and theoretical chemistry}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2210-271X}, doi = {10.1016/j.comptc.2011.11.044}, pages = {52 -- 58}, year = {2012}, abstract = {The validity of the Taft equation: log(k(R)/k(CH3)) = rho*sigma* + delta E-S was studied with the aid of NBO computational results concerning cyclohexyl esters RCOOC6H11 [R = Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec-Butyl, tert-Butyl, Neopentyl, CH(CH2CH3)(2), CH(CH3)C(CH3)(3), C(CH3)(2)CH2CH3, C(CH3)(2)C(CH3)(3), CH(CH3)(Np), CH(iPr)(tBu), C(Me)(Et)(iPr), C(Et)(2)(tBu) or C(Et)(iPr)(tBu)]. It was proved that the sigma*(alkyl) value is a composite substitutent constant including the polar and steric contributions. A novel computational sigma(q)* substituent constant scale is presented based on the NBO atomic charges of the alpha-carbon and the computational total steric exchange energies E(ster) of the cyclohexyl esters specified above. The method used offers a useful way to calculate sigma*(alkyl) values for alkyl groups for which experimental Taft's polar sigma* parameters are not available.}, language = {en} } @article{NeuvonenNeuvonenKochetal.2013, author = {Neuvonen, Kari and Neuvonen, Helmi and Koch, Andreas and Kleinpeter, Erich}, title = {Nature of the steric Omega(S), E-R and E-S ' substituent constants - comparison with the aid of NBO and STERIC analysis}, series = {Computational and theoretical chemistry}, volume = {1015}, journal = {Computational and theoretical chemistry}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2210-271X}, doi = {10.1016/j.comptc.2013.03.025}, pages = {34 -- 43}, year = {2013}, abstract = {The nature of the major steric substituent constant scales for alkyl substituents, i.e. Omega(S), E-R and E-S' scales, was studied with the aid of the NBO and the natural steric (STERIC) analyses. Cyclohexyl esters R-3-CCOOC6H11 (R = alkyl or H) were used as the model compounds. Special emphasis was laid on the potential contribution of the polar component in these steric substituent parameters. In the light of our model the Omega(S) scale seems to be dominantly a steric substituent constant scale as is seen on the strengths of the good correlation between the Omega(S) constants of the CR3 group and the total steric exchange energy values E-TSEE for the model compounds. However, the Omega(S) values also seem to include a minor electronic component due to the varying electrostatic effect via the C alpha atom. On the other hand, E-R and E-S' parameters largely hinge on the size dependent polar effect of the CR3 alkyl group. By way of our model this repulsive interaction can be quantified by descriptor Delta q(OCO), the natural charge difference q(C)(C=O) - Sigma qO for the O-C(=O) functional group. Delta q(OCO) depends on the E-TSEE values, on qC alpha and on the polarization coefficients of the oxygen hybrid in the NBO of the pi(C=O) bond. The size sensitivity of the kinetic E-S' constants can be connected to variation of the Burgi-Dunitz angle in the transition state for the standard reaction used. A comparison is made for the q(C)(C=O) or Delta q(OCO) values computed on the one hand with the NBO formalism and on the other hand with the Hirshfeld formalism. A practical novel substituent constant q(C)(C=O) for the size of the alkyl groups is introduced.}, language = {en} }