@misc{Laschewsky2012, author = {Laschewsky, Andr{\´e}}, title = {Recent trends in the synthesis of polyelectrolytes}, series = {Current opinion in colloid \& interface science : current chemistry}, volume = {17}, journal = {Current opinion in colloid \& interface science : current chemistry}, number = {2}, publisher = {Elsevier}, address = {London}, issn = {1359-0294}, doi = {10.1016/j.cocis.2011.08.001}, pages = {56 -- 63}, year = {2012}, abstract = {Recent developments in the synthesis of polyelectrolytes are highlighted, with respect to the nature of the ionic groups, the polymer backbones, synthetic methods, and additional functionality given to the polyelectrolytes. In fact, the synthesis of new polyelectrolytes is mostly driven by material aspects, currently. The article pays particular attention to strong polyelectrolytes, and the new methods of controlled polymerization. These methods and the so-called click reactions have enabled novel designs of polyelectrolytes. Nevertheless, the polymerization of unprotected ionic monomers is still challenging and limits the synthetic possibilities. The structural aspects are complemented by considerations with respect to the aspired uses of the new polyelectrolytes.}, language = {en} } @article{DodooBalzerHugeletal.2013, author = {Dodoo, Samuel and Balzer, Bizan N. and Hugel, Thorsten and Laschewsky, Andr{\´e} and von Klitzing, Regine}, title = {Effect of ionic strength and layer number on swelling of polyelectrolyte multilayers in water vapour}, series = {Soft materials}, volume = {11}, journal = {Soft materials}, number = {2}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1539-445X}, doi = {10.1080/1539445X.2011.607203}, pages = {157 -- 164}, year = {2013}, abstract = {The swelling behavior of polyelectrolyte multilayers (PEMs) of poly(sodium-4 styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared from aqueous solution of 0.1 M and 0.5 M NaCl are investigated by ellipsometry and Atomic Force Microscopy (AFM). From 1 double-layer up to 4 double-layers of 0.1 M NaCl, the amount of swelling water in the PEMs decreases with increasing number of adsorbed double layers due to an increase in polyelectrolyte density as a result of the attraction between the positively charged outermost PDADMAC layer and the Si substrate. From 6 double layers to 30 double layers, the attraction is reduced due to a much larger distance between substrate and outermost layer leading to a much lower polyelectrolyte density and higher swelling water. In PEMs prepared from aqueous solution of 0.5 M NaCl, the amount of water constantly increases which is related to a monotonically decreasing polyelectrolyte density with increasing number of polyelectrolyte layers. Studies of the surface topology also indicate a transition from a more substrate affected interphase behavior to a continuum properties of the polyelectrolyte multilayers. The threshold for the transition from interphase to continuum behavior depends on the preparation conditions of the PEM.}, language = {en} }