@article{HellwigWalzMarkovic2019, author = {Hellwig, Niels and Walz, Ariane and Markovic, Danijela}, title = {Climatic and socioeconomic effects on land cover changes across Europe}, series = {PloS One}, volume = {14}, journal = {PloS One}, number = {7}, publisher = {PLOS 1}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0219374}, pages = {20}, year = {2019}, abstract = {Land cover change is a dynamic phenomenon driven by synergetic biophysical and socioeconomic effects. It involves massive transitions from natural to less natural habitats and thereby threatens ecosystems and the services they provide. To retain intact ecosystems and reduce land cover change to a minimum of natural transition processes, a dense network of protected areas has been established across Europe. However, even protected areas and in particular the zones around protected areas have been shown to undergo land cover changes. The aim of our study was to compare land cover changes in protected areas, non-protected areas, and 1 km buffer zones around protected areas and analyse their relationship to climatic and socioeconomic factors across Europe between 2000 and 2012 based on earth observation data. We investigated land cover flows describing major change processes: urbanisation, afforestation, deforestation, intensification of agriculture, extensification of agriculture, and formation of water bodies. Based on boosted regression trees, we modelled correlations between land cover flows and climatic and socioeconomic factors. The results show that land cover changes were most frequent in 1 km buffer zones around protected areas (3.0\% of all buffer areas affected). Overall, land cover changes within protected areas were less frequent than outside, although they still amounted to 18,800 km2 (1.5\% of all protected areas) from 2000 to 2012. In some parts of Europe, urbanisation and intensification of agriculture still accounted for up to 25\% of land cover changes within protected areas. Modelling revealed meaningful relationships between land cover changes and a combination of influencing factors. Demographic factors (accessibility to cities and population density) were most important for coarse-scale patterns of land cover changes, whereas fine-scale patterns were most related to longitude (representing the general east/west economic gradient) and latitude (representing the north/south climatic gradient).}, language = {en} } @article{SmithRheinwaltBookhagen2019, author = {Smith, Taylor and Rheinwalt, Aljoscha and Bookhagen, Bodo}, title = {Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset}, series = {Earth Surface Dynamics}, volume = {7}, journal = {Earth Surface Dynamics}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-7-475-2019}, pages = {475 -- 489}, year = {2019}, abstract = {Digital elevation models (DEMs) are a gridded representation of the surface of the Earth and typically contain uncertainties due to data collection and processing. Slope and aspect estimates on a DEM contain errors and uncertainties inherited from the representation of a continuous surface as a grid (referred to as truncation error; TE) and from any DEM uncertainty. We analyze in detail the impacts of TE and propagated elevation uncertainty (PEU) on slope and aspect. Using synthetic data as a control, we define functions to quantify both TE and PEU for arbitrary grids. We then develop a quality metric which captures the combined impact of both TE and PEU on the calculation of topographic metrics. Our quality metric allows us to examine the spatial patterns of error and uncertainty in topographic metrics and to compare calculations on DEMs of different sizes and accuracies. Using lidar data with point density of ∼10 pts m-2 covering Santa Cruz Island in southern California, we are able to generate DEMs and uncertainty estimates at several grid resolutions. Slope (aspect) errors on the 1 m dataset are on average 0.3∘ (0.9∘) from TE and 5.5∘ (14.5∘) from PEU. We calculate an optimal DEM resolution for our SCI lidar dataset of 4 m that minimizes the error bounds on topographic metric calculations due to the combined influence of TE and PEU for both slope and aspect calculations over the entire SCI. Average slope (aspect) errors from the 4 m DEM are 0.25∘ (0.75∘) from TE and 5∘ (12.5∘) from PEU. While the smallest grid resolution possible from the high-density SCI lidar is not necessarily optimal for calculating topographic metrics, high point-density data are essential for measuring DEM uncertainty across a range of resolutions.}, language = {en} } @article{DelgadoVossBuergeretal.2018, author = {Delgado, Jos{\´e} Miguel Martins and Voss, Sebastian and B{\"u}rger, Gerd and Vormoor, Klaus Josef and Murawski, Aline and Rodrigues Pereira, Jos{\´e} Marcelo and Martins, Eduardo and Vasconcelos J{\´u}nior, Francisco and Francke, Till}, title = {Seasonal drought prediction for semiarid northeastern Brazil}, series = {Hydrology and Earth System Sciences}, volume = {22}, journal = {Hydrology and Earth System Sciences}, number = {9}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-22-5041-2018}, pages = {5041 -- 5056}, year = {2018}, abstract = {A set of seasonal drought forecast models was assessed and verified for the Jaguaribe River in semiarid northeastern Brazil. Meteorological seasonal forecasts were provided by the operational forecasting system used at FUNCEME (Cear{\´a}'s research foundation for meteorology)and by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three downscaling approaches (empirical quantile mapping, extended downscaling and weather pattern classification) were tested and combined with the models in hindcast mode for the period 1981 to 2014. The forecast issue time was January and the forecast period was January to June. Hydrological drought indices were obtained by fitting a multivariate linear regression to observations. In short, it was possible to obtain forecasts for (a) monthly precipitation,(b) meteorological drought indices, and (c) hydrological drought indices. The skill of the forecasting systems was evaluated with regard to root mean square error (RMSE), the Brier skill score (BSS) and the relative operating characteristic skill score (ROCSS). The tested forecasting products showed similar performance in the analyzed metrics. Forecasts of monthly precipitation had little or no skill considering RMSE and mostly no skill with BSS. A similar picture was seen when forecasting meteorological drought indices: low skill regarding RMSE and BSS and significant skill when discriminating hit rate and false alarm rate given by the ROCSS (forecasting drought events of, e.g., SPEI1 showed a ROCSS of around 0.5). Regarding the temporal variation of the forecast skill of the meteorological indices, it was greatest for April, when compared to the remaining months of the rainy season, while the skill of reservoir volume forecasts decreased with lead time. This work showed that a multi-model ensemble can forecast drought events of timescales relevant to water managers in northeastern Brazil with skill. But no or little skill could be found in the forecasts of monthly precipitation or drought indices of lower scales, like SPI1. Both this work and those here revisited showed that major steps forward are needed in forecasting the rainy season in northeastern Brazil.}, language = {en} }