@article{MurrayStanimirovicMcClureGriffithsetal.2015, author = {Murray, Claire E. and Stanimirovic, Snezana and McClure-Griffiths, Naomi M. and Putman, Mary E. and Liszt, Harvey S. and Wong, Tony and Richter, Philipp and Dawson, Joanne R. and Dickey, John M. and Lindner, Robert R. and Babler, Brian L. and Allison, James R.}, title = {First detection of HCO+ absorption in the magellanic system}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {808}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/808/1/41}, pages = {6}, year = {2015}, abstract = {We present the first detection of HCO+ absorption in the Magellanic System. Using the ATCA, we observed nine extragalactic radio continuum sources behind the Magellanic System and detected HCO+ absorption toward one source located behind the leading edge of the Magellanic Bridge. The detection is located at an LSR velocity of v = 214.0 +/- 0.4 km s(-1), with an FWHM of Delta v = 4.5 +/- 1.0 km s(-1), and an optical depth of tau (HCO+) = 0.10 +/- 0.02. Although there is abundant neutral hydrogen (H I) surrounding the sight line in position-velocity space, at the exact location of the absorber the H I column density is low, <10(20) cm(-2), and there is little evidence for dust or CO emission from Planck observations. While the origin and survival of molecules in such a diffuse environment remain unclear, dynamical events such as H I flows and cloud collisions in this interacting system likely play an important role.}, language = {en} }