@article{MeierMotschmannSchmidtetal.2015, author = {Meier, Patrick and Motschmann, Uwe and Schmidt, Jurgen and Spahn, Frank and Hill, Thomas W. and Dong, Yaxue and Jones, Geraint H. and Kriegel, Hendrik}, title = {Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations}, series = {Planetary and space science}, volume = {119}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2015.10.002}, pages = {208 -- 221}, year = {2015}, language = {en} } @article{TobieTeanbyCoustenisetal.2014, author = {Tobie, G. and Teanby, N. A. and Coustenis, A. and Jaumann, Ralf and Raulin, E. and Schmidt, J. and Carrasco, N. and Coates, Andrew J. and Cordier, D. and De Kok, R. and Geppert, W. D. and Lebreton, J. -P. and Lefevre, A. and Livengood, T. A. and Mandt, K. E. and Mitri, G. and Nimmo, F. and Nixon, C. A. and Norman, L. and Pappalardo, R. T. and Postberg, F. and Rodriguez, S. and SchuizeMakuch, D. and Soderblom, J. M. and Solomonidou, A. and Stephan, K. and Stofan, E. R. and Turtle, E. P. and Wagner, R. J. and West, R. A. and Westlake, J. H.}, title = {Science goals and mission concept for the future exploration of Titan and Enceladus}, series = {Planetary and space science}, volume = {104}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2014.10.002}, pages = {59 -- 77}, year = {2014}, language = {en} } @article{MeierKriegelMotschmannetal.2014, author = {Meier, Patrick and Kriegel, Hendrik and Motschmann, Uwe and Schmidt, J{\"u}rgen and Spahn, Frank and Hill, Thomas W. and Dong, Yaxue and Jones, Geraint H.}, title = {A model of the spatial and size distribution of Enceladus' dust plume}, series = {Planetary and space science}, volume = {104}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2014.09.016}, pages = {216 -- 233}, year = {2014}, language = {en} } @article{SchenkHamiltonJohnsonetal.2011, author = {Schenk, Paul and Hamilton, Douglas P. and Johnson, Robert E. and McKinnon, William B. and Paranicas, Chris and Schmidt, J{\"u}rgen and Showalter, Mark R.}, title = {Plasma, plumes and rings saturn system dynamics as recorded in global color patterns on its midsize icy satellites}, series = {Icarus : international journal of solar system studies}, volume = {211}, journal = {Icarus : international journal of solar system studies}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2010.08.016}, pages = {740 -- 757}, year = {2011}, abstract = {New global maps of the five inner midsize icy saturnian satellites, Mimas, Enceladus, Tethys, Dione, and Rhea, have been constructed in three colors (UV, Green and near-IR) at resolutions of 1 km/pixel. The maps reveal prominent global patterns common to several of these satellites but also three major color features unique to specific satellites or satellite subgroups. The most common features among the group are first-order global asymmetries in color properties. This pattern, expressed on Tethys, Dione and Rhea, takes the form of a similar to 1.4-1.8 times enhancement in redness (expressed as IR/UV ratio) of the surface at the center of the trailing hemisphere of motion, and a similar though significantly weaker IR/UV enhancement at the center of the leading hemisphere. The peak in redness on the trailing hemisphere also corresponds to a known decrease in albedo. These double hemispheric asymmetries are attributable to plasma and E-ring grain bombardment on the trailing and leading hemispheres, respectively, for the outer three satellites Tethys, Dione and Rhea, whereas as E-ring bombardment may be focused on the trailing hemisphere of Mimas due to its orbital location interior to Enceladus. The maps also reveal three major deviations from these basic global patterns. We observe the previously known dark bluish leading hemisphere equatorial band on Tethys but have also discovered a similar band on Mimas. Similar in shape, both features match the surface patterns expected for irradiation of the surface by incident MeV electrons that drift in a direction opposite to the plasma flow. The global asymmetry on Enceladus is offset similar to 40 degrees to the west compared to the other satellites. We do not consider Enceladus in detail here, but the global distribution of bluish material can be shown to match the deposition pattern predicted for plume fallback onto the surface (Kempf, S., Beckmann, U., Schmidt, S. [2010]. Icarus 206, 446-457. doi:10.1016/j.icarus.2009.09.016). E-ring deposition on Enceladus thus appears to mask or prevent the formation of the lenses and hemispheric asymmetries we see on the other satellites. Finally, we observe a chain of discrete bluish splotches along the equator of Rhea. Unlike the equatorial bands of Tethys and Mimas, these splotches form a very narrow great circle <= 10-km wide (north-to-south) and appear to be related to surface disruption, exposing fresh, bluish ice on older crater rims. This feature is unique to Rhea and may have formed by impact onto its surface of orbiting material.}, language = {en} }