@article{RoudWackGilderetal.2021, author = {Roud, Sophie and Wack, Michael Richard and Gilder, Stuart A. and Kudriavtseva, Anna and Sobel, Edward}, title = {Miocene to early pleistocene depositional history and tectonic evolution of the Issyk-Kul Basin, Central Tian Shan}, series = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, volume = {22}, journal = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, number = {4}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1525-2027}, doi = {10.1029/2020GC009556}, pages = {16}, year = {2021}, abstract = {The Issyk-Kul Basin (Kyrgyzstan), situated in the central Tian Shan Mountains, hosts the largest and deepest mountain lake in Central Asia. Erosion of the surrounding Terskey and Kungey ranges led to the accumulation of up to 4 km of sediment in the adjacent depression. Creation of the basin from regional shortening and uplift likely initiated around the Oligocene-Miocene, yet precise age control is sparse. To better understand the timing of these processes, we obtained magnetostratigraphic age constraints on fossil-poor, fluvio-lacustrine sediments exposed south of Lake Issyk-Kul, that agree well with previous age constraints of the equivalent strata outside the Issyk-Kul Basin. Two 500-650 m thick sections comprised mainly of Chu Group sediments were dated at 6.3-2.8 Ma and 7.0-2.4 Ma (late Miocene to early Pleistocene). Together with reinterpreted magnetostratigraphic constraints from underlying strata, we find that syn-tectonic deposition commenced at similar to 22 Ma with average sedimentation rates <10 cm/ka. Sedimentation rates increased to 10-30 cm/ka at 7 Ma, concurrent with accelerated uplift in the Terskey Range to the south. A deformation event in one section (Kaji-Say) between 5 and 3 Ma together with concurrent shifts of depositional centers throughout the basin signal the onset of substantial uplift of the Kungey Range to the north at similar to 5 Ma. This uplift and deformation transformed the Issyk-Kul area into a closed basin that facilitated the formation of a deep lake. Lacustrine facies deposited around 3 Ma mark the existence of Lake Issyk-Kul by that time.}, language = {en} } @article{BougeoisDupontNivetdeRafelisetal.2018, author = {Bougeois, Laurie and Dupont-Nivet, Guillaume and de Rafelis, Marc and Tindall, Julia C. and Proust, Jean-Noel and Reichart, Gert-Jan and de Nooijer, Lennart J. and Guo, Zhaojie and Ormukov, Cholponbelk}, title = {Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters}, series = {Earth and planetary science letters}, volume = {485}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.12.036}, pages = {99 -- 110}, year = {2018}, abstract = {Asian climate patterns, characterised by highly seasonal monsoons and continentality, are thought to originate in the Eocene epoch (56 to 34 million years ago - Ma) in response to global climate, Tibetan Plateau uplift and the disappearance of the giant Proto-Paratethys sea formerly extending over Eurasia. The influence of this sea on Asian climate has hitherto not been constrained by proxy records despite being recognised as a major driver by climate models. We report here strongly seasonal records preserved in annual lamina of Eocene oysters from the Proto-Paratethys with sedimentological and numerical data showing that monsoons were not dampened by the sea and that aridification was modulated by westerly moisture sourced from the sea. Hot and arid summers despite the presence of the sea suggest a strong anticyclonic zone at Central Asian latitudes and an orographic effect from the emerging Tibetan Plateau. Westerly moisture precipitating during cold and wetter winters appear to have decreased in two steps. First in response to the late Eocene (34-37 Ma) sea retreat; second by the orogeny of the Tian Shan and Pamir ranges shielding the westerlies after 25 Ma. Paleogene sea retreat and Neogene westerly shielding thus provide two successive mechanisms forcing coeval Asian desertification and biotic crises.}, language = {en} } @article{FitzsimmonsSprafkeZielhoferetal.2018, author = {Fitzsimmons, Kathryn E. and Sprafke, Tobias and Zielhofer, Christoph and G{\"u}nter, Christina and Deom, Jean-Marc and Sala, Renato and Iovita, Radu}, title = {Loess accumulation in the Tian Shan piedmont}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {469}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2016.07.041}, pages = {30 -- 43}, year = {2018}, abstract = {Whilst correlations have been made between the loess of Europe and China, deposits in Central Asia have remained largely overlooked by scientific investigation. The nature of the relationship between loess accumulation and palaeoclimate at the core of the Eurasian loess belt is particularly poorly understood. Here we reconstruct palaeoenvironmental change in Central Asia over the last 40 ky based on data from the Remizovka loess profile, in the northern foothills of the Tian Shan in southern Kazakhstan. Our interpretations are based on synthesis of chronostratigraphic, colour and magnetic susceptibility data, supported by chronostratigraphies from two additional sites nearby, Maibulak and Valikhanova. All three sites record substantially increased loess accumulation during late MIS 3 into the global last glacial maximum (gLGM). At Remizovka, increased loess flux occurred in two pulses at c. 38-25 ka and 22-18 ka, with the intervening period involving incipient pedogenesis. At Maibulak, two loess pulses at c. 40-30 ka and c. 28-22 ka are separated by a weakly developed paleosol which may date to the same time as pedogenesis at Remizovka. There is additional possible periglacial influence at Maibulak from c. 40-33.5 ka. At Valikhanova, there is some age overlap between paleosol and loess samples, but overall loess accumulation appears to have increased at c. 42-35 ka, c. 30 ka and the gLGM, with pedogenesis occurring >40 ka and c. 32 ka. At all three sites, Holocene loess accumulation is minimal; this period is characterised by pedogenesis. The chronostratigraphic variability between our sites highlights a need to interrogate climate-driven models for loess formation in piedmont environments. We interpret our data in the context of regional palaeoenvironmental archives to indicate that loess accumulation increased coeval with MIS 3 glacial advance in the Tian Shan, which was facilitated by northward expansion of the Asian monsoon and associated increase in precipitation. We hypothesise that increased ice volume impeded teleconnections with the temperate zone westerlies to the north; these were compressed against the piedmont resulting in increased wind strength and facilitating increased loess flux. Peak loess accumulation during the gLGM occurred under colder, drier climatic conditions, with reduced but sustained glacial ice volume and persistent influence of the westerlies in the arid Central Asian piedmont loess belt. In the absence of more widespread, reliably dated palaeoenvironmental records from the region, our data become of critical importance for understanding past environmental conditions in Central Asia, relative to elsewhere in Eurasia and globally.}, language = {en} } @article{MeijerDupontNivetAbelsetal.2019, author = {Meijer, Niels and Dupont-Nivet, Guillaume and Abels, Hemmo A. and Kaya, Mustafa Y. and Licht, Alexis and Xiao, Meimei and Zhang, Yang and Roperch, Pierrick and Poujol, Marc and Lai, Zhongping and Guo, Zhaojie}, title = {Central Asian moisture modulated by proto-Paratethys Sea incursions since the early Eocene}, series = {Earth and planetary science letters}, volume = {510}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.12.031}, pages = {73 -- 84}, year = {2019}, abstract = {The establishment and evolution of the Asian monsoons and arid interior have been linked to uplift of the Tibetan Plateau, retreat of the inland proto-Paratethys Sea and global cooling during the Cenozoic. However, the respective role of these driving mechanisms remains poorly constrained. This is partly due to a lack of continental records covering the key Eocene epoch marked by the onset of Tibetan Plateau uplift, proto-Paratethys Sea incursions and long-term global cooling. In this study, we reconstruct paleoenvironments in the Xining Basin, NE Tibet, to show a long-term drying of the Asian continental interior from the early Eocene to the Oligocene. Superimposed on this trend are three alternations between arid mudflat and wetter saline lake intervals, which are interpreted to reflect atmospheric moisture fluctuations in the basin. We date these fluctuations using magnetostratigraphy and the radiometric age of an intercalated tuff layer. The first saline lake interval is tentatively constrained to the late Paleocene-early Eocene. The other two are firmly dated between similar to 46 Ma (top magnetochron C21n) and similar to 41 Ma (base C18r) and between similar to 40 Ma (base C18n) and similar to 37 Ma (top C17n). Remarkably, these phases correlate in time with highstands of the proto-Paratethys Sea. This strongly suggests that these sea incursions enhanced westerly moisture supply as far inland as the Xining Basin. We conclude that the proto-Paratethys Sea constituted a key driver of Asian climate and should be considered in model and proxy interpretations. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{BougeoisdeRafelisReichartetal.2016, author = {Bougeois, Laurie and de Rafelis, Marc and Reichart, Gert-Jan and de Nooijer, Lennart J. and Dupont-Nivet, Guillaume}, title = {Mg/Ca in fossil oyster shells as palaeotemperature proxy, an example from the Palaeogene of Central Asia}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {441}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2015.09.052}, pages = {611 -- 626}, year = {2016}, abstract = {Fossil oyster shells are well-suited to provide palaeotemperature proxies from geologic to seasonal timescales due to their ubiquitous occurrence from Triassic to Quaternary sediments, the seasonal nature of their shell growth and their relative strong resistance to post-mortem alteration. However, the common use to translate calcitic oxygen isotopes into palaeotemperatures is challenged by uncertainties in accounting for past seawater delta O-18, especially in shallow coastal environment where oysters calcify. In principle, the Mg/Ca ratio in oyster shells can provide an alternative palaeothermometer. Several studies provided temperature calibrations for this potential proxy based on modem species, nevertheless their application to palaeo-studies remains hitherto unexplored. Here, we show that past temperature variability in seawater can be obtained from Mg/Ca analyses from selected fossil oyster species and specimens. High-resolution Mg/Ca profiles, combined with delta O-18, were obtained along 41 fossil oyster shells of seven different species from the Palaeogene Proto-Paratethys sea (Central Asia) found in similar as well as different depositional age and environments providing comparison. Suitable Mg/Ca profiles, defined by continuous cyclicity and reproducibility within one shell, are found to be consistent for specimens of the same species but differ systematically between species, implying a dominant species-specific effect on the Mg/Ca signal. Two species studied here (Ostrea (Turkostrea) strictiplicata and Sokolowia buhsii) provide an excellent proxy for palaeoclimate reconstruction from China to Europe in Palaeogene marine sediments. More generally, the protocol developed here can be applied to identify other fossil oyster species suitable for palaeoclimate reconstructions. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchmidtZiemannPentzienetal.2016, author = {Schmidt, Birgit Angelika and Ziemann, Martin Andreas and Pentzien, Simone and Gabsch, Toralf and Koch, Werner and Kr{\"u}ger, J{\"o}rg}, title = {Technical analysis of a Central Asian wall painting detached from a Buddhist cave temple on the northern Silk Road}, series = {Studies in Conservation}, volume = {61}, journal = {Studies in Conservation}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0039-3630}, doi = {10.1179/2047058414Y.0000000152}, pages = {113 -- 122}, year = {2016}, abstract = {A great number of Central Asian wall paintings, archeological materials, architectural fragments, and textiles, as well as painting fragments on silk and paper, make up the so called Turfan Collection at the Asian Art Museum in Berlin. The largest part of the collection comes from the Kucha region, a very important cultural center in the third to ninth centuries. Between 1902 and 1914, four German expeditions traveled along the northern Silk Road. During these expeditions, wall paintings were detached from their original settings in Buddhist cave complexes. This paper reports a technical study of a wall painting, existing in eight fragments, from the Buddhist cave no. 40 (Ritterhohle). Its original painted surface is soot blackened and largely illegible. Gruwedel, leader of the first and third expeditions, described the almost complete destruction of the rediscovered temple complex and evidence of fire damage. The aim of this case study is to identify the materials used for the wall paintings. Furthermore, soot deposits as well as materials from conservation interventions were of interest. Non-invasive analyses were preferred but a limited number of samples were taken to provide more precise information on the painting technique. By employing optical and scanning electron microscopy, energy dispersive X-ray spectroscopy, micro X-ray fluorescence spectroscopy, X-ray diffraction analysis, and Raman spectroscopy, a layer sequence of earthen render, a ground layer made of gypsum, and a paint layer containing a variety of inorganic pigments were identified.}, language = {en} } @article{TaftMischkeWiechertetal.2014, author = {Taft, Linda and Mischke, Steffen and Wiechert, Uwe and Leipe, Christian and Rajabov, Ilhomjon and Riedel, Frank}, title = {Sclerochronological oxygen and carbon isotope ratios in Radix (Gastropoda) shells indicate changes of glacial meltwater flux and temperature since 4,200 cal yr BP at Lake Karakul, eastern Pamirs (Tajikistan)}, series = {Journal of paleolimnolog}, volume = {52}, journal = {Journal of paleolimnolog}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-014-9776-4}, pages = {27 -- 41}, year = {2014}, abstract = {We report delta O-18 and delta C-13 values of 21 fossil shells from the aquatic gastropod Radix from a sediment core taken in the eastern basin of Lake Karakul, Tajikistan (38.86-39.16A degrees N, 73.26-73.56A degrees E, 3,928 m above sea level) and covering the last 4,200 cal yr BP. The lake is surrounded by many palaeoshorelines evidencing former lake-level changes, most likely triggered by changes in meltwater flux. This hypothesis was tested by interpreting the isotope ratios of Radix shells together with delta O-18 values of Ostracoda and of authigenic aragonite. The mean delta O-18 values of Radix and Ostracoda fall along the same long-term trend indicating a change in the isotopic composition of precipitation, which contributed to the glaciers in the catchment as snow and finally as melt water to the lake. The sclerochronological delta O-18 and delta C-13 patterns in Radix shells provide seasonal weather information, which is discussed in context with previously proposed climatic changes during the last 4,200 cal yr BP. The period between similar to 4,200 and 3,000 cal yr BP was characterized by stepwise glacier advance in the catchment most likely due to a precipitation surplus. Subsequently the climate remained relatively cold but the lake level fluctuated, as indicated by ostracod shell isotope data. From similar to 1,800 cal yr BP the sclerochronological patterns provide evidence for increasing melt water flux and transport of allochthonous carbon into the lake, most likely due to an accelerated glacier retreat. The period around 1,500 cal yr BP was characterized by strong warming, increasing meltwater flux, glacier retreat and an increasing lake level. Warm conditions continued until similar to 500 cal yr I'P probably representing the end of the Medieval Warm Period. A short relatively cold (dry?) period and a lower lake level are assumed for similar to 350 cal yr BP, possibly an analogue to the Maunder Minimum cooling in the North Atlantic region. Our results show that the lake system is complex, and that changes were triggered by external forcing and feedbacks. The similarity of delta O-18 values in Radix and ostracod shells demonstrates that both archives provide complementary information.}, language = {en} } @article{LauterbachWittPlessenetal.2014, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {24}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {8}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614534741}, pages = {970 -- 984}, year = {2014}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} } @article{MischkeZhang2011, author = {Mischke, Steffen and Zhang, Chengjun}, title = {Ostracod distribution in Ulungur Lake (Xinjiang, China) and a reassessed Holocene record}, series = {Ecological research}, volume = {26}, journal = {Ecological research}, number = {1}, publisher = {Springer}, address = {Tokyo}, issn = {0912-3814}, doi = {10.1007/s11284-010-0768-1}, pages = {133 -- 145}, year = {2011}, abstract = {Ostracod shells in surface sediments from Ulungur Lake (Xinjiang, China) belong mainly to Limnocythere inopinata as the dominant species, and Candona neglecta and Darwinula stevensoni as accompanying, less abundant taxa. Shells of an additional nine species were recorded only sporadically. The three most abundant ostracods have wide tolerance ranges in terms of salinity, substrate and water depth. The similarly recorded bivalve Pisidium subtruncatum, and the gastropods Gyraulus chinensis and Radix auricularia belong to the most tolerant representatives of the genera. The bivalve and gastropods, in addition to the ostracod assemblage, reflect the fact that Ulungur Lake has experienced strong lake level and salinity variations due to water withdrawal in the catchment and the counteracting diversion of river waters to the lake in recent decades. The substrate in Ulungur Lake is typically fine-grained, apart from the delta region of the Ulungur River channel, which is marked by relatively coarse-grained detrital sediments barren of ostracod shells. This channel was created 40 years ago to divert water to Ulungur Lake and support its local fisheries and recreational facilities. A reassessed Holocene ostracod record from the lake shows that a significantly higher salinity and lower lake level existed in the early Holocene before 6.0 ka in response to the regional climate. In contrast, a higher lake level and lowest salinity is inferred for the late Holocene period between ca. 3.6 and 1.3 ka before present. Afterwards, the lake level declined and salinity increased in response to regional moisture reduction, although conditions similar to the early Holocene lake status were not re-established. Our surface-sediment-derived data provide a baseline for analysis of future environmental variations due to global climate change and regional water management.}, language = {en} } @article{VanderMeerenMischkeSunjidmaaetal.2012, author = {Van der Meeren, T. and Mischke, Steffen and Sunjidmaa, N. and Herzschuh, Ulrike and Ito, E. and Martens, K. and Verschuren, Dirk}, title = {Subfossil ostracode assemblages from Mongolia quantifying response for paleolimnological applications}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {14}, journal = {Ecological indicators : integrating monitoring, assessment and management}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2011.07.004}, pages = {138 -- 151}, year = {2012}, abstract = {Ostracodes (Ostracoda, Crustacea) are aquatic micro-crustaceans with a significant representation in the fossil record. If the environmental influence on the species composition of their communities is robustly quantified, past changes in ostracode communities reflected in fossil assemblages can be used for paleo-environmental reconstruction. We analyzed ostracode assemblages in recently deposited surface sediments from 56 lakes in western and central Mongolia, and simultaneously recorded local water chemistry and solute concentration in order to elucidate the distribution of individual ostracode species in relation to these broad environmental gradients. Multivariate analysis indicated that the species variation in ostracode assemblages could be mainly attributed to variations in percent calcium (\%Ca) relative to total cation content, mean annual precipitation, calcium concentration, alkalinity, percent bicarbonate relative to total anion content, and mean July temperature. This matches well with the results of a similar analysis on presence/absence data of living ostracodes in nearshore samples, even though some differences exist between the faunal composition of both datasets. The documented response of ostracode species to environmental variation tracks the typical solute evolutionary pathway for surface waters in this region, characterized by calcite precipitation and consequent depletion in dissolved calcium. Hence, the best quantitative inference model (WA-PLS model with R-jack(2) = 0.70, RMSEP = 0.40) for paleolimnological application was obtained for \%Ca. Comparison between this model and a specific conductance (SC) inference model based on the same dataset, and based on ostracode datasets from different regions, indicated that the \%Ca inference model suffers less than the SC inference model from a step-change in reconstructed values. The statistical power of different inference models based on Mongolian ostracodes are variously affected by the common dominance of a single euryhaline species (Limnocythere inopinata), limited faunal turnover in the freshwater portion of the salinity gradient, and the bimodal frequency distribution of SC among regional lakes. The latter probably represents true scarcity of lakes with intermediate salinity rather than a biased representation in our dataset. In a broader context of ostracode ecology, and with respect to regional paleolimnological applications, we highlight the potential of fossil Mongolian ostracode assemblages to trace past hydrological shifts associated with changes in groundwater inflow.}, language = {en} }