@article{BirukovCuadratPolemitietal.2021, author = {Birukov, Anna and Cuadrat, Rafael R. C. and Polemiti, Elli and Eichelmann, Fabian and Schulze, Matthias Bernd}, title = {Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals}, series = {Cardiovascular diabetology}, volume = {20}, journal = {Cardiovascular diabetology}, number = {1}, publisher = {BioMed Central}, address = {London}, issn = {1475-2840}, doi = {10.1186/s12933-021-01296-5}, pages = {11}, year = {2021}, abstract = {Background Advanced glycation end-products are proteins that become glycated after contact with sugars and are implicated in endothelial dysfunction and arterial stiffening. We aimed to investigate the relationships between advanced glycation end-products, measured as skin autofluorescence, and vascular stiffness in various glycemic strata. Methods We performed a cross-sectional analysis within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort, comprising n = 3535 participants (median age 67 years, 60\% women). Advanced glycation end-products were measured as skin autofluorescence with AGE-Reader (TM), vascular stiffness was measured as pulse wave velocity, augmentation index and ankle-brachial index with Vascular Explorer (TM). A subset of 1348 participants underwent an oral glucose tolerance test. Participants were sub-phenotyped into normoglycemic, prediabetes and diabetes groups. Associations between skin autofluorescence and various indices of vascular stiffness were assessed by multivariable regression analyses and were adjusted for age, sex, measures of adiposity and lifestyle, blood pressure, prevalent conditions, medication use and blood biomarkers. Results Skin autofluorescence associated with pulse wave velocity, augmentation index and ankle-brachial index, adjusted beta coefficients (95\% CI) per unit skin autofluorescence increase: 0.38 (0.21; 0.55) for carotid-femoral pulse wave velocity, 0.25 (0.14; 0.37) for aortic pulse wave velocity, 1.00 (0.29; 1.70) for aortic augmentation index, 4.12 (2.24; 6.00) for brachial augmentation index and - 0.04 (- 0.05; - 0.02) for ankle-brachial index. The associations were strongest in men, younger individuals and were consistent across all glycemic strata: for carotid-femoral pulse wave velocity 0.36 (0.12; 0.60) in normoglycemic, 0.33 (- 0.01; 0.67) in prediabetes and 0.45 (0.09; 0.80) in diabetes groups; with similar estimates for aortic pulse wave velocity. Augmentation index was associated with skin autofluorescence only in normoglycemic and diabetes groups. Ankle-brachial index inversely associated with skin autofluorescence across all sex, age and glycemic strata. Conclusions Our findings indicate that advanced glycation end-products measured as skin autofluorescence might be involved in vascular stiffening independent of age and other cardiometabolic risk factors not only in individuals with diabetes but also in normoglycemic and prediabetic conditions. Skin autofluorescence might prove as a rapid and non-invasive method for assessment of macrovascular disease progression across all glycemic strata.}, language = {en} } @article{LuckeRensing2014, author = {Lucke, Ulrike and Rensing, Christoph}, title = {A survey on pervasive education}, series = {Pervasive and mobile computing}, volume = {14}, journal = {Pervasive and mobile computing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-1192}, doi = {10.1016/j.pmcj.2013.12.001}, pages = {3 -- 16}, year = {2014}, abstract = {Researchers and developers worldwide have put their efforts into the design, development and use of information and communication technology to support teaching and learning. This research is driven by pedagogical as well as technological disciplines. The most challenging ideas are currently found in the application of mobile, ubiquitous, pervasive, contextualized and seamless technologies for education, which we shall refer to as pervasive education. This article provides a comprehensive overview of the existing work in this field and categorizes it with respect to educational settings. Using this approach, best practice solutions for certain educational settings and open questions for pervasive education are highlighted in order to inspire interested developers and educators. The work is assigned to different fields, identified by the main pervasive technologies used and the educational settings. Based on these assignments we identify areas within pervasive education that are currently disregarded or deemed challenging so that further research and development in these fields are stimulated in a trans-disciplinary approach. (C) 2013 Elsevier B.V. All rights reserved.}, language = {en} }