@article{OlasApeltWatanabeetal.2021, author = {Olas, Justyna Jadwiga and Apelt, Federico and Watanabe, Mutsumi and H{\"o}fgen, Rainer and Wahl, Vanessa}, title = {Developmental stage-specific metabolite signatures in Arabidopsis thaliana under optimal and mild nitrogen limitation}, series = {Plant science : an international journal of experimental plant biology}, volume = {303}, journal = {Plant science : an international journal of experimental plant biology}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0168-9452}, doi = {10.1016/j.plantsci.2020.110746}, pages = {14}, year = {2021}, abstract = {Metabolites influence flowering time, and thus are among the major determinants of yield. Despite the reported role of trehalose 6-phosphate and nitrate signaling on the transition from the vegetative to the reproductive phase, little is known about other metabolites contributing and responding to developmental phase changes. To increase our understanding which metabolic traits change throughout development in Arabidopsis thaliana and to identify metabolic markers for the vegetative and reproductive phases, especially among individual amino acids (AA), we profiled metabolites of plants grown in optimal (ON) and limited nitrogen (N) (LN) conditions, the latter providing a mild but consistent limitation of N. We found that although LN plants adapt their growth to a decreased level of N, their metabolite profiles are strongly distinct from ON plant profiles, with N as the driving factor for the observed differences. We demonstrate that the vegetative and the reproductive phase are not only marked by growth parameters such as biomass and rosette area, but also by specific metabolite signatures including specific single AA. In summary, we identified N-dependent and -independent indicators manifesting developmental stages, indicating that the plant's metabolic status also reports on the developmental phases.}, language = {en} } @article{GoetzChmielewskiGoedekeetal.2017, author = {Goetz, Klaus-Peter and Chmielewski, Frank M. and Goedeke, Kristin and Wolf, Kristine and Jander, Elisabeth and Sievers, Steven and Homann, Thomas and Huschek, Gerd and Rawel, Harshadrai Manilal}, title = {Assessment of amino acids during winter rest and ontogenetic development in sweet cherry buds (Prunus avium. L.)}, series = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, volume = {222}, journal = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-4238}, doi = {10.1016/j.scienta.2017.05.001}, pages = {102 -- 110}, year = {2017}, abstract = {This study examined changes in sweet cherry buds of 'Summit' cultivar in four seasons (2011/12-2014/15) with respect to the nitrogen (N) content and the profile of eight free amino acids (asparagine (Asn), aspartic acid (Asp), isoleucine (Ile), glutamine (Gln), glutamic acid (Glu), arginine (Arg), alanine (Ala), histidine (His)). The presented results are to our knowledge the first under natural conditions in fruit tree orchards with a high temporal resolution from the dormant stage until cluster development. The N content in the buds from October, during endo- and ecodormancy until the beginning of ontogenetic development was a relatively stable parameter in each of the four seasons. The N accumulation into the buds began after 'swollen bud' and significant differences were visible at 'green tip' with an N content of 3.24, 3.12, 3.08, 2.40 which increased markedly to the mean of 'tight' and 'open cluster' by 3.77\%, 3.78\%, 3.44\% and 3.10\% in 2012-2015, respectively. In the buds, levels of asparagine were higher (up to 44 mg g\&\#8722;1 DW\&\#8722;1) than aspartic acid (up to 2 mg g\&\#8722;1 DW\&\#8722;1) and aspartic acid higher than isoleucine (up to 0.83 mg g\&\#8722;1 DW\&\#8722;1). Levels of glutamine were higher (up to 25 mg g\&\#8722;1 DW\&\#8722;1) than glutamic acid (up to 20 mg g\&\#8722;1 DW\&\#8722;1). The course of the arginine content was higher in 2011/12 compared to 2012/13, 2013/14 and 2014/15 which showed only slight differences. The alanine content in the buds was denoted in the four seasons only by relatively minor changes. The histidine content was higher in 2011/12 and 2012/13 compared to 2013/14 and 2014/15 which showed a comparable pattern. For 6 amino acids (Asn, Asp, Ile, Glu, Arg, Ala), the highest content was observed in 2012/13, the warmest period between swollen bud and open cluster. However in 2014/15, the season with the lowest mean temperature of 8.8 °C, only the content of Gln was the lowest. It was not possible to explain any seasonal differences in the amino acid content by environmental factors (air temperature) on the basis of few seasons. From none of the measured free amino acids could a clear determination of the date of endodormancy release (t1) or the beginning of the ontogenetic development (t1*) be derived. Therefore, these amino acids are no suitable markers to improve phenological models for the beginning of cherry blossom.}, language = {en} } @article{ZuehlkeRiebeBeitzetal.2016, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Andreotti, Sandro and Reinert, Knut and Zenichowski, Karl and Diener, Marc}, title = {High-performance liquid chromatography with electrospray ionization ion mobility spectrometry: Characterization, data management, and applications}, series = {Journal of separation science}, volume = {39}, journal = {Journal of separation science}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1615-9306}, doi = {10.1002/jssc.201600749}, pages = {4756 -- 4764}, year = {2016}, abstract = {The combination of high-performance liquid chromatography and electrospray ionization ion mobility spectrometry facilitates the two-dimensional separation of complex mixtures in the retention and drift time plane. The ion mobility spectrometer presented here was optimized for flow rates customarily used in high-performance liquid chromatography between 100 and 1500 mu L/min. The characterization of the system with respect to such parameters as the peak capacity of each time dimension and of the 2D spectrum was carried out based on a separation of a pesticide mixture containing 24 substances. While the total ion current chromatogram is coarsely resolved, exhibiting coelutions for a number of compounds, all substances can be separately detected in the 2D plane due to the orthogonality of the separations in retention and drift dimensions. Another major advantage of the ion mobility detector is the identification of substances based on their characteristic mobilities. Electrospray ionization allows the detection of substances lacking a chromophore. As an example, the separation of a mixture of 18 amino acids is presented. A software built upon the free mass spectrometry package OpenMS was developed for processing the extensive 2D data. The different processing steps are implemented as separate modules which can be arranged in a graphic workflow facilitating automated processing of data.}, language = {en} } @article{GoetzChmielewskiHomannetal.2014, author = {Goetz, Klaus-Peter and Chmielewski, Frank M. and Homann, Thomas and Huschek, Gerd and Matzneller, Philipp and Rawel, Harshadrai Manilal}, title = {Seasonal changes of physiological parameters in sweet cherry (Prunus avium L.) buds}, series = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, volume = {172}, journal = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-4238}, doi = {10.1016/j.scienta.2014.04.012}, pages = {183 -- 190}, year = {2014}, abstract = {The transition from dormant stage to the beginning of growth was first obvious by markedly changes of the water content. The phase from green tip to tight cluster, with a length of only 4 days, was the period of the most physiological activity in single buds, because of the highest daily accumulation rates of fresh/dry weight, C, N. We assume a concentration dependant regulation of the member of the aspartate family (asparagine, aspartic acid, isoleucine) during dormancy, growth and development in sweet cherry buds. The ABA content showed 2011/12 a clear bimodal pattern which was at lower level similar in 2012/13, but not so strong incisive. In both years, the first peak was probably related to the end of endodormancy. However the ABA-isomer content showed in both seasons a unimodal pattern. The maximum of the ratio of ABA-isomer/ABA indicated the beginning of ontogenetic development which starts 3 and 2 weeks later, respectively. Our results suggest that ABA and the ABA-isomer in the sweet cherry buds regulate differentiated metabolic processes in the dormant stage and during bud growth and development. After replication in the season 2013/14 the estimated dates of release of endodormancy, beginning of ecodormancy and start of ontogenetic development will be used to validate and improve phenological models for the beginning of cherry blossom. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} }