@article{KleinpeterKochSchulzetal.2014, author = {Kleinpeter, Erich and Koch, Andreas and Schulz, Stefanie and Wacker, Philipp}, title = {Interplay of para- and diatropic ring currents [(anti)aromaticity] of macrocyclic rings subject to conformational influences, further annelation and hydrogenation of aromatic ring moieties}, series = {Tetrahedron}, volume = {70}, journal = {Tetrahedron}, number = {48}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2014.10.018}, pages = {9230 -- 9239}, year = {2014}, abstract = {The spatial magnetic properties (Through Space NMR Shieldings-TSNMRS) of a variety of porphyrins, hemiporphyrazines and tetraoxo[8]circulenes have been computed, visualized as Iso-chemical Shielding Surfaces (ICSS) of various size and direction, and were examined subject to the interplay of present (para)-diatropic ring currents [(anti)aromaticity] and influences on the latter property originating from the macrocyclic ring conformation, further annelation and partial to complete hydrogenation of aromatic ring moieties. Caution seems to be indicated when concluding from a single NICS parameter to present (para)diatropic ring currents [(anti)aromaticity]. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KleinpeterKoch2013, author = {Kleinpeter, Erich and Koch, Andreas}, title = {(Anti)aromaticity of dehydroannulenes of various ring size proved by the ring current effect in H-1 NMR spectra}, series = {Tetrahedron}, volume = {69}, journal = {Tetrahedron}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2012.12.019}, pages = {1481 -- 1488}, year = {2013}, abstract = {The spatial magnetic properties (Through-Space NMR Shieldings-TSNMRS) of already synthesized dehydro[n]annulenes of various ring size (from C-12 to C-20) have been computed, visualized as Isochemical Shielding Surfaces (ICSS) of various size and direction, and were examined subject to present (anti)aromaticity. For this purpose the thus quantified ring current effect of the macro cycles on proximate protons in proton NMR spectra was employed.}, language = {en} }