@article{CrawfordKaramatLehotaietal.2020, author = {Crawford, Tim and Karamat, Fazeelat and Lehotai, N{\´o}ra and Rentoft, Matilda and Blomberg, Jeanette and Strand, {\AA}sa and Bj{\"o}rklund, Stefan}, title = {Specific functions for mediator complex subunits from different modules in the transcriptional response of arabidopsis thaliana to abiotic stress}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-61758-w}, pages = {1 -- 18}, year = {2020}, abstract = {Adverse environmental conditions are detrimental to plant growth and development. Acclimation to abiotic stress conditions involves activation of signaling pathways which often results in changes in gene expression via networks of transcription factors (TFs). Mediator is a highly conserved co-regulator complex and an essential component of the transcriptional machinery in eukaryotes. Some Mediator subunits have been implicated in stress-responsive signaling pathways; however, much remains unknown regarding the role of plant Mediator in abiotic stress responses. Here, we use RNA-seq to analyze the transcriptional response of Arabidopsis thaliana to heat, cold and salt stress conditions. We identify a set of common abiotic stress regulons and describe the sequential and combinatorial nature of TFs involved in their transcriptional regulation. Furthermore, we identify stress-specific roles for the Mediator subunits MED9, MED16, MED18 and CDK8, and putative TFs connecting them to different stress signaling pathways. Our data also indicate different modes of action for subunits or modules of Mediator at the same gene loci, including a co-repressor function for MED16 prior to stress. These results illuminate a poorly understood but important player in the transcriptional response of plants to abiotic stress and identify target genes and mechanisms as a prelude to further biochemical characterization.}, language = {en} } @article{HeldPascaudEckertetal.2011, author = {Held, Katrin and Pascaud, Francois and Eckert, Christian and Gajdanowicz, Pawel and Hashimoto, Kenji and Corratge-Faillie, Claire and Offenborn, Jan Niklas and Lacombe, Benoit and Dreyer, Ingo and Thibaud, Jean-Baptiste and Kudla, J{\"o}rg}, title = {Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex}, series = {Cell research}, volume = {21}, journal = {Cell research}, number = {7}, publisher = {Nature Publ. Group}, address = {Shanghai}, issn = {1001-0602}, doi = {10.1038/cr.2011.50}, pages = {1116 -- 1130}, year = {2011}, abstract = {Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.}, language = {en} } @article{NeuschaeferRubePatheNeuschaeferRubeHippenstieletal.2013, author = {Neusch{\"a}fer-Rube, Frank and Pathe-Neusch{\"a}fer-Rube, A. and Hippenstiel, S. and Kracht, M. and P{\"u}schel, Gerhard Paul}, title = {NF-kB-dependent IL-8 induction by prostaglandin EP2 receptors EP1 and EP4}, series = {British journal of pharmacology : journal of The British Pharmacological Society}, volume = {168}, journal = {British journal of pharmacology : journal of The British Pharmacological Society}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0007-1188}, doi = {10.1111/j.1476-5381.2012.02182.x}, pages = {704 -- 717}, year = {2013}, abstract = {Background and Purpose Recent studies suggested a role for PGE2 in the expression of the chemokine IL-8. PGE2 signals via four different GPCRs, EP1-EP4. The role of EP1 and EP4 receptors for IL-8 induction was studied in HEK293 cells, overexpressing EP1 (HEK-EP1), EP4 (HEK-EP4) or both receptors (HEK-EP1 + EP4). Experimental Approach IL-8 mRNA and protein induction and IL-8 promoter and NF-?B activation were assessed in EP expressing HEK cells. Key Results In HEK-EP1 and HEK-EP1 + EP4 but not HEK or HEK-EP4 cells, PGE2 activated the IL-8 promoter and induced IL-8 mRNA and protein synthesis. Stimulation of HEK-EP1 + EP4 cells with an EP1-specific agonist activated IL-8 promoter and induced IL-8 mRNA and protein, whereas a specific EP4 agonist neither activated the IL-8 promoter nor induced IL-8 mRNA and protein synthesis. Simultaneous stimulation of HEK- EP1 + EP4 cells with both agonists activated IL-8 promoter and induced IL-8 mRNA to the same extent as PGE2. In HEK-EP1 + EP4 cells, PGE2-mediated IL-8 promoter activation and IL-8 mRNA induction were blunted by inhibition of I?B kinase. PGE2 activated NF-?B in HEK-EP1, HEK-EP4 and HEK-EP1 + EP4 cells. In HEK-EP1 + EP4 cells, simultaneous activation of both receptors was needed for maximal PGE2-induced NF-?B activation. PGE2-stimulated NF-?B activation by EP1 was blocked by inhibitors of PLC, calcium-signalling and Src-kinase, whereas that induced by EP4 was only blunted by Src-kinase inhibition. Conclusions and Implications These findings suggest that PGE2-mediated NF-?B activation by simultaneous stimulation of EP1 and EP4 receptors induces maximal IL-8 promoter activation and IL-8 mRNA and protein induction.}, language = {en} }