@article{SteidlLischeidEngelkeetal.2021, author = {Steidl, J{\"o}rg and Lischeid, Gunnar and Engelke, Clemens and Koch, Franka}, title = {The curse of the past}, series = {Agriculture, Ecosystems \& Environment}, volume = {326}, journal = {Agriculture, Ecosystems \& Environment}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2021.107787}, pages = {14}, year = {2021}, abstract = {One challenge for modern agricultural management schemes is the reduction of harmful effects on the envi-ronment, e.g. in terms of the emission of nutrients. Sampling the effluent of tile drains is a very efficient way to sample seepage water from larger areas directly underneath the main rooting zone. Time series of solute con-centration in tile drains can be linked to agricultural management data and thus indicate the efficacy of individual management measures. To that end, the weekly runoff and solute concentration were determined in long-term measurement campaigns at 25 outlets of artificial tile drains at 19 various arable fields in the German federal state of Mecklenburg-Vorpommern. The study sites were distributed within a 23,000 km(2) region and were deemed representative of intense arable land use. In addition, comprehensive meteorological and man-agement data were provided. To disentangle the different effects, monitoring data were subjected to a principal component analysis. Loadings on the prevailing principal components and spatial and temporal patterns of the component scores were considered indicative of different processes. Principal component scores were then related to meteorological and management data via random forest modelling. Hydrological conditions and weather were identified as primary driving forces for the nutrient discharge behaviour of the drain plots, as well as the nitrogen balance. In contrast, direct effects of recent agricultural management could hardly be identified. Instead, we found clear evidence of the long-term and indirect effects of agriculture on nearly all solutes. We conclude that tile drain effluent quality primarily reflected the soil-internal mobilisation or de-mobilisation of nutrients and related solutes rather than allowing inferences to be drawn about recent individual agricultural management measures. On the other hand, principal component analysis revealed a variety of indirect and long-term effects of fertilisation on solutes other than nitrogen or phosphorus that are still widely overlooked in nutrient turnover studies.}, language = {en} } @article{MaesBlondeelPerringetal.2019, author = {Maes, Sybryn L. and Blondeel, Haben and Perring, Michael P. and Depauw, Leen and Brumelis, Guntis and Brunet, J{\"o}rg and Decocq, Guillaume and den Ouden, Jan and Haerdtle, Werner and Hedl, Radim and Heinken, Thilo and Heinrichs, Steffi and Jaroszewicz, Bogdan and Kirby, Keith J. and Kopecky, Martin and Malis, Frantisek and Wulf, Monika and Verheyen, Kris}, title = {Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests}, series = {Forest ecology and management}, volume = {433}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2018.10.056}, pages = {405 -- 418}, year = {2019}, abstract = {Topsoil conditions in temperate forests are influenced by several soil-forming factors, such as canopy composition (e.g. through litter quality), land-use history, atmospheric deposition, and the parent material. Many studies have evaluated the effects of single factors on physicochemical topsoil conditions, but few have assessed the simultaneous effects of multiple drivers. Here, we evaluate the combined effects of litter quality, land-use history (past land cover as well as past forest management), and atmospheric deposition on several physicochemical topsoil conditions of European temperate deciduous forest soils: bulk density, proportion of exchangeable base cations, carbon/nitrogen-ratio (C/N), litter mass, bio-available and total phosphorus, pH(KCI)and soil organic matter. We collected mineral soil and litter layer samples, and measured site characteristics for 190 20 x 20 m European mixed forest plots across gradients of litter quality (derived from the canopy species composition) and atmospheric deposition, and for different categories of past land cover and past forest management. We accounted for the effects of parent material on topsoil conditions by clustering our plots into three soil type groups based on texture and carbonate concentration. We found that litter quality was a stronger driver of topsoil conditions compared to land-use history or atmospheric deposition, while the soil type also affected several topsoil conditions here. Plots with higher litter quality had soils with a higher proportion of exchangeable base cations, and total phosphorus, and lower C/N-ratios and litter mass. Furthermore, the observed litter quality effects on the topsoil were independent from the regional nitrogen deposition or the soil type, although the soil type likely (co)-determined canopy composition and thus litter quality to some extent in the investigated plots. Litter quality effects on topsoil phosphorus concentrations did interact with past land cover, highlighting the need to consider land-use history when evaluating canopy effects on soil conditions. We conclude that forest managers can use the canopy composition as an important tool for influencing topsoil conditions, although soil type remains an important factor to consider.}, language = {en} } @article{KlausKleinebeckerHoelzeletal.2011, author = {Klaus, Valentin H. and Kleinebecker, Till and Hoelzel, Norbert and Bluethgen, Nico and Boch, Steffen and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Prati, Daniel and Fischer, Markus}, title = {Nutrient concentrations and fibre contents of plant community biomass reflect species richness patterns along a broad range of land-use intensities among agricultural grasslands}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {13}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {4}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2011.07.001}, pages = {287 -- 295}, year = {2011}, abstract = {Understanding changes in biodiversity in agricultural landscapes in relation to land-use type and intensity is a major issue in current ecological research. In this context nutrient enrichment has been identified as a key mechanism inducing species loss in Central European grassland ecosystems. At the same time, insights into the linkage between agricultural land use and plant nutrient status are largely missing. So far, studies on the relationship between chemical composition of plant community biomass and biodiversity have mainly been restricted to wetlands and all these studies neglected the effects of land use. Therefore, we analyzed aboveground biomass of 145 grassland plots covering a gradient of land-use intensities in three regions across Germany. In particular, we explored relationships between vascular plant species richness and nutrient concentrations as well as fibre contents (neutral and acid detergent fibre and lignin) in the aboveground community biomass. We found the concentrations of several nutrients in the biomass to be closely linked to plant species richness and land use. Whereas phosphorus concentrations increased with land-use intensity and decreased with plant species richness, nitrogen and potassium concentrations showed less clear patterns. Fibre fractions were negatively related to nutrient concentrations in biomass, but hardly to land-use measures and species richness. Only high lignin contents were positively associated with species richness of grasslands. The N:P ratio was strongly positively related to species richness and even more so to the number of endangered plant species, indicating a higher persistence of endangered species under P (co-)limited conditions. Therefore, we stress the importance of low P supply for species-rich grasslands and suggest the N:P ratio in community biomass to be a useful proxy of the conservation value of agriculturally used grasslands.}, language = {en} } @article{KlausKleinebeckerBochetal.2012, author = {Klaus, Valentin H. and Kleinebecker, Till and Boch, Steffen and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Prati, Daniel and Fischer, Markus and Hoelzel, Norbert}, title = {NIRS meets Ellenberg's indicator values prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {14}, journal = {Ecological indicators : integrating monitoring, assessment and management}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2011.07.016}, pages = {82 -- 86}, year = {2012}, abstract = {Ellenberg indicator values are widely used ecological tools to elucidate relationships between vegetation and environment in ecological research and environmental planning. However, they are mainly deduced from expert knowledge on plant species and are thus subject of ongoing discussion. We researched if Ellenberg indicator values can be directly extracted from the vegetation biomass itself. Mean Ellenberg "moisture" (mF) and "nitrogen" (mN) values of 141 grassland plots were related to nutrient concentrations, fibre fractions and spectral information of the aboveground biomass. We developed calibration models for the prediction of mF and mN using spectral characteristics of biomass samples with near-infrared reflectance spectroscopy (NIRS). Prediction goodness was evaluated with internal cross-validations and with an external validation data set. NIRS could accurately predict Ellenberg mN, and with less accuracy Ellenberg mF. Predictions were not more precise for cover-weighted Ellenberg values compared with un-weighted values. Both Ellenberg mN and mF showed significant and strong correlations with some of the nutrient and fibre concentrations in the biomass. Against expectations, Ellenberg mN was more closely related to phosphorus than to nitrogen concentrations, suggesting that this value rather indicates productivity than solely nitrogen. To our knowledge we showed for the first time that mean Ellenberg indicator values could be directly predicted from the aboveground biomass, which underlines the usefulness of the NIRS technology for ecological studies, especially in grasslands ecosystems.}, language = {en} } @article{HundBrownLavkulichetal.2013, author = {Hund, Silja V. and Brown, Sandra and Lavkulich, Les M. and Oswald, Sascha Eric}, title = {Relating P Lability in Stream Sediments to Watershed Land Use via an Effective Sequential Extraction Scheme}, series = {Water, air \& soil pollution : an international journal of environmental pollution}, volume = {224}, journal = {Water, air \& soil pollution : an international journal of environmental pollution}, number = {9}, publisher = {Springer}, address = {Dordrecht}, issn = {0049-6979}, doi = {10.1007/s11270-013-1643-9}, pages = {13}, year = {2013}, abstract = {High applications of P fertilizers and manure are general practice in intensive agriculture and may cause eutrophication in adjacent streams. Bioavailability of P can be estimated by sequential extractions commonly used for soil or sediment. A single combined method may facilitate more effective comparisons of topsoils and adjoining stream sediments, and enhance management decisions. In this study, the suitability of an established soil P sequential extraction was tested on stream bed sediments. The study was conducted in the Sumas River watershed in the agricultural Lower Fraser Valley, Canada. Sediment samples with differing land use (forest, low and high intensity agriculture) from 1993, 1994, 2008, and 2009 from 14 sites along the Sumas River and tributaries were used. Total sequential extraction concentrations were in agreement with aqua regia digestion (Rs=0.96) and showed consistency over the study time sequence. P fractions released by 0.5 M NaHCO3 (median 14 \%), 0.1 M NaOH (33 \%), and 1.0 M HCl (38 \%) were significantly (alpha=0.05) higher than P released by other extractants. These three extraction steps provide a practical and time-effective assessment of P lability in stream sediments and may be used as a combined scheme for sediment and soil. Analytical results further revealed that land use has a major and characteristic impact on P lability. With a land use change from forest to intensive agriculture, results showed an increase in total P concentrations (30 to 4,000 ppm) and in P lability, in particular for the moderately labile NaOH-P fraction (20 to 50 \%).}, language = {en} } @article{KlausKleinebeckerPratietal.2013, author = {Klaus, Valentin H. and Kleinebecker, Till and Prati, Daniel and Gossner, Martin M. and Alt, Fabian and Boch, Steffen and Gockel, Sonja and Hemp, Andreas and Lange, Markus and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Pasalic, Esther and Renner, Swen C. and Socher, Stephanie A. and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Fischer, Markus and H{\"o}lzel, Norbert}, title = {Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {177}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2013.05.019}, pages = {1 -- 9}, year = {2013}, abstract = {Organic management is one of the most popular strategies to reduce negative environmental impacts of intensive agriculture. However, little is known about benefits for biodiversity and potential worsening of yield under organic grasslands management across different grassland types, i.e. meadow, pasture and mown pasture. Therefore, we studied the diversity of vascular plants and foliage-living arthropods (Coleoptera, Araneae, Heteroptera, Auchenorrhyncha), yield, fodder quality, soil phosphorus concentrations and land-use intensity of organic and conventional grasslands across three study regions in Germany. Furthermore, all variables were related to the time since conversion to organic management in order to assess temporal developments reaching up to 18 years. Arthropod diversity was significantly higher under organic than conventional management, although this was not the case for Araneae, Heteroptera and Auchenorrhyncha when analyzed separately. On the contrary, arthropod abundance, vascular plant diversity and also yield and fodder quality did not considerably differ between organic and conventional grasslands. Analyses did not reveal differences in the effect of organic management among grassland types. None of the recorded abiotic and biotic parameters showed a significant trend with time since transition to organic management, except soil organic phosphorus concentrations which decreased with time. This implies that permanent grasslands respond slower and probably weaker to organic management than crop fields do. However, as land-use intensity and inorganic soil phosphorus concentrations were significantly lower in organic grasslands, overcoming seed and dispersal limitation by re-introducing plant species might be needed to exploit the full ecological potential of organic grassland management. We conclude that although organic management did not automatically increase the diversity of all studied taxa, it is a reasonable and useful way to support agro-biodiversity.}, language = {en} }