@article{NavirianHerzogGoldshteynetal.2011, author = {Navirian, Hengameh A. and Herzog, Marc and Goldshteyn, J. and Leitenberger, Wolfram and Vrejoiu, Ionella and Khakhulin, D. and Wulff, M. and Shayduk, Roman and Gaal, P. and Bargheer, Matias}, title = {Shortening x-ray pulses for pump-probe experiments at synchrotrons}, series = {Journal of applied physics}, volume = {109}, journal = {Journal of applied physics}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.3601057}, pages = {3}, year = {2011}, abstract = {We implemented an experimental scheme for ultrafast x-ray diffraction at storage rings based on a laser-driven Bragg-switch that shortens the x-ray pulses emitted from an undulator. The increased time-resolution is demonstrated by observing changes of intensity, position and width of the diffraction peaks of a La(0.7)Sr(0.3)MnO(3)/SrTiO(3) superlattice sample after optical excitation, i.e., by quantitatively measuring the propagation of an expansion wave through the sample. These experimental transients with timescales of 35 to 60 ps evidence a reduction of the x-ray pulse duration by a factor of two.}, language = {en} } @article{ShaydukNavirianLeitenbergeretal.2011, author = {Shayduk, Roman and Navirian, Hengameh and Leitenberger, Wolfram and Goldshteyn, Jevgenij and Vrejoiu, Ionela and Weinelt, Martin and Gaal, Peter and Herzog, Marc and von Korff Schmising, Clemens and Bargheer, Matias}, title = {Nanoscale heat transport studied by high-resolution time-resolved x-ray diffraction}, series = {New journal of physics : the open-access journal for physics}, volume = {13}, journal = {New journal of physics : the open-access journal for physics}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/13/9/093032}, pages = {11}, year = {2011}, abstract = {We report on synchrotron-based high-repetition rate ultrafast x-ray diffraction (UXRD) experiments monitoring the transport of heat from an epitaxial La(0.7)Sr(0.3)MnO(3)/SrTiO(3) superlattice (SL) into the substrate on timescales from 100 ps to 4 mu s. Transient thermal lattice expansion was determined with an accuracy of 10(-7), corresponding to a sensitivity to temperature changes down to 0.01 K. We follow the heat flow within the SL and into the substrate after the impulsive laser heating leads to a small temperature rise of Delta T = 6 K. The transient lattice temperature can be simulated very well using the bulk heat conductivities. This contradicts the interpretation of previous UXRD measurements, which predicted a long-lasting expansion of SrRuO(3) for more than 200 ps. The disagreement could be resolved by assuming that the heat conductivity changes in the first hundred picoseconds.}, language = {en} } @article{GruberChakravartyBaehtzetal.2011, author = {Gruber, W. and Chakravarty, S. and Baehtz, C. and Leitenberger, Wolfram and Bruns, M. and Kobler, A. and K{\"u}bel, Christian and Schmidt, H.}, title = {Strain relaxation and vacancy creation in thin platinum films}, series = {Physical review letters}, volume = {107}, journal = {Physical review letters}, number = {26}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.107.265501}, pages = {5}, year = {2011}, abstract = {Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 degrees C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.}, language = {en} }