@article{BalazadehSiddiquiAlluetal.2010, author = {Balazadeh, Salma and Siddiqui, Hamad and Allu, Annapurna Devi and Matallana-Ramirez, Lilian Paola and Caldana, Camila and Mehrnia, Mohammad and Zanor, Maria-In{\´e}s and Koehler, Barbara and M{\"u}ller-R{\"o}ber, Bernd}, title = {A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence}, issn = {0960-7412}, doi = {10.1111/j.1365-313X.2010.04151.x}, year = {2010}, abstract = {P>The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46\% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets.}, language = {en} } @article{RohrmannTohgeAlbaetal.2011, author = {Rohrmann, Johannes and Tohge, Takayuki and Alba, Rob and Osorio, Sonia and Caldana, Camila and McQuinn, Ryan and Arvidsson, Samuel Janne and van der Merwe, Margaretha J. and Riano-Pachon, Diego Mauricio and M{\"u}ller-R{\"o}ber, Bernd and Fei, Zhangjun and Nesi, Adriano Nunes and Giovannoni, James J. and Fernie, Alisdair R.}, title = {Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development}, series = {The plant journal}, volume = {68}, journal = {The plant journal}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0960-7412}, doi = {10.1111/j.1365-313X.2011.04750.x}, pages = {999 -- 1013}, year = {2011}, abstract = {Maturation of fleshy fruits such as tomato (Solanum lycopersicum) is subject to tight genetic control. Here we describe the development of a quantitative real-time PCR platform that allows accurate quantification of the expression level of approximately 1000 tomato transcription factors. In addition to utilizing this novel approach, we performed cDNA microarray analysis and metabolite profiling of primary and secondary metabolites using GC-MS and LC-MS, respectively. We applied these platforms to pericarp material harvested throughout fruit development, studying both wild-type Solanum lycopersicum cv. Ailsa Craig and the hp1 mutant. This mutant is functionally deficient in the tomato homologue of the negative regulator of the light signal transduction gene DDB1 from Arabidopsis, and is furthermore characterized by dramatically increased pigment and phenolic contents. We choose this particular mutant as it had previously been shown to have dramatic alterations in the content of several important fruit metabolites but relatively little impact on other ripening phenotypes. The combined dataset was mined in order to identify metabolites that were under the control of these transcription factors, and, where possible, the respective transcriptional regulation underlying this control. The results are discussed in terms of both programmed fruit ripening and development and the transcriptional and metabolic shifts that occur in parallel during these processes.}, language = {en} } @article{JueppnerMubeenLeisseetal.2017, author = {J{\"u}ppner, Jessica and Mubeen, Umarah and Leisse, Andrea and Caldana, Camila and Brust, Henrike and Steup, Martin and Herrmann, Marion and Steinhauser, Dirk and Giavalisco, Patrick}, title = {Dynamics of lipids and metabolites during the cell cycle of Chlamydomonas reinhardtii}, series = {The plant journal}, volume = {92}, journal = {The plant journal}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13642}, pages = {331 -- 343}, year = {2017}, abstract = {Metabolites and lipids are the final products of enzymatic processes, distinguishing the different cellular functions and activities of single cells or whole tissues. Understanding these cellular functions within a well-established model system requires a systemic collection of molecular and physiological information. In the current report, the green alga Chlamydomonas reinhardtii was selected to establish a comprehensive workflow for the detailed multi-omics analysis of a synchronously growing cell culture system. After implementation and benchmarking of the synchronous cell culture, a two-phase extraction method was adopted for the analysis of proteins, lipids, metabolites and starch from a single sample aliquot of as little as 10-15million Chlamydomonas cells. In a proof of concept study, primary metabolites and lipids were sampled throughout the diurnal cell cycle. The results of these time-resolved measurements showed that single compounds were not only coordinated with each other in different pathways, but that these complex metabolic signatures have the potential to be used as biomarkers of various cellular processes. Taken together, the developed workflow, including the synchronized growth of the photoautotrophic cell culture, in combination with comprehensive extraction methods and detailed metabolic phenotyping has the potential for use in in-depth analysis of complex cellular processes, providing essential information for the understanding of complex biological systems.}, language = {en} } @phdthesis{Caldana2007, author = {Caldana, Camila}, title = {Genome wide identification and functional characterization of transcription factors involved in the initial phase of salt stress in rice}, address = {Potsdam}, pages = {vi, 154 S.: Ill., graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Caldana2007, author = {Caldana, Camila}, title = {Genome wide identification and functional characterization of transcription factors involvend in the initial phase of salt stress in rice}, address = {Potsdam}, pages = {154 S., i-vi, : graph. Darst.}, year = {2007}, language = {en} } @article{ToepferCaldanaGrimbsetal.2013, author = {T{\"o}pfer, Nadine and Caldana, Camila and Grimbs, Sergio and Willmitzer, Lothar and Fernie, Alisdair R. and Nikoloski, Zoran}, title = {Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in arabidopsis}, series = {The plant cell}, volume = {25}, journal = {The plant cell}, number = {4}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.112.108852}, pages = {1197 -- 1211}, year = {2013}, abstract = {Understanding metabolic acclimation of plants to challenging environmental conditions is essential for dissecting the role of metabolic pathways in growth and survival. As stresses involve simultaneous physiological alterations across all levels of cellular organization, a comprehensive characterization of the role of metabolic pathways in acclimation necessitates integration of genome-scale models with high-throughput data. Here, we present an integrative optimization-based approach, which, by coupling a plant metabolic network model and transcriptomics data, can predict the metabolic pathways affected in a single, carefully controlled experiment. Moreover, we propose three optimization-based indices that characterize different aspects of metabolic pathway behavior in the context of the entire metabolic network. We demonstrate that the proposed approach and indices facilitate quantitative comparisons and characterization of the plant metabolic response under eight different light and/or temperature conditions. The predictions of the metabolic functions involved in metabolic acclimation of Arabidopsis thaliana to the changing conditions are in line with experimental evidence and result in a hypothesis about the role of homocysteine-to-Cys interconversion and Asn biosynthesis. The approach can also be used to reveal the role of particular metabolic pathways in other scenarios, while taking into consideration the entirety of characterized plant metabolism.}, language = {en} } @article{BalazadehKwasniewskiCaldanaetal.2011, author = {Balazadeh, Salma and Kwasniewski, Miroslaw and Caldana, Camila and Mehrnia, Mohammad and Zanor, Maria Ines and Xue, Gang-Ping and M{\"u}ller-R{\"o}ber, Bernd}, title = {ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana}, series = {Molecular plant}, volume = {4}, journal = {Molecular plant}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-2052}, doi = {10.1093/mp/ssq080}, pages = {346 -- 360}, year = {2011}, abstract = {We report here that ORS1, a previously uncharacterized member of the NAC transcription factor family, controls leaf senescence in Arabidopsis thaliana. Overexpression of ORS1 accelerates senescence in transgenic plants, whereas its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic plants producing dexamethasone-inducible ORS1-GR fusion protein. Of the 42 up-regulated genes, 30 (similar to 70\%) were previously shown to be up-regulated during age-dependent senescence. We also observed that 32 (similar to 76\%) of the ORS1-dependent genes were induced by long-term (4 d), but not short-term (6 h) salinity stress (150 mM NaCl). Furthermore, expression of 16 and 24 genes, respectively, was induced after 1 and 5 h of treatment with hydrogen peroxide (H2O2), a reactive oxygen species known to accumulate during salinity stress. ORS1 itself was found to be rapidly and strongly induced by H2O2 treatment in both leaves and roots. Using in vitro binding site selection, we determined the preferred binding motif of ORS1 and found it to be present in half of the ORS1-dependent genes. ORS1 is a paralog of ORE1/ANAC092/AtNAC2, a previously reported regulator of leaf senescence. Phylogenetic footprinting revealed evolutionary conservation of the ORS1 and ORE1 promoter sequences in different Brassicaceae species, indicating strong positive selection acting on both genes. We conclude that ORS1, similarly to ORE1, triggers expression of senescence-associated genes through a regulatory network that may involve cross-talk with salt- and H2O2-dependent signaling pathways.}, language = {en} } @article{CalderanRodriguesLuzarowskiMonteBelloetal.2021, author = {Calderan-Rodrigues, Maria Juliana and Luzarowski, Marcin and Monte-Bello, Carolina Cassano and Minen, Romina Ines and Z{\"u}hlke, Boris M. and Nikoloski, Zoran and Skirycz, Aleksandra and Caldana, Camila}, title = {Proteogenic dipeptides are characterized by diel fluctuations and target of rapamycin complex-signaling dependency in the model plant Arabidopsis thaliana}, series = {Frontiers in plant science : FPLS}, volume = {12}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2021.758933}, pages = {15}, year = {2021}, abstract = {As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.}, language = {en} } @article{GliwickaBalazadehCaldanaetal.2009, author = {Gliwicka, Marta and Balazadeh, Salma and Caldana, Camila and M{\"u}ller-R{\"o}ber, Bernd and Gaj, Malgorzata D.}, title = {The use of multi-qPCR platform and tan1 mutant in identification of TF genes involved in somatic embryogenesis in Arabidopsis}, issn = {0001-5296}, year = {2009}, language = {en} }