@misc{HesseMatthiesSinzigetal.2019, author = {Hesse, G{\"u}nter and Matthies, Christoph and Sinzig, Werner and Uflacker, Matthias}, title = {Adding Value by Combining Business and Sensor Data}, series = {Database Systems for Advanced Applications}, volume = {11448}, journal = {Database Systems for Advanced Applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-18590-9}, issn = {0302-9743}, doi = {10.1007/978-3-030-18590-9_80}, pages = {528 -- 532}, year = {2019}, abstract = {Industry 4.0 and the Internet of Things are recent developments that have lead to the creation of new kinds of manufacturing data. Linking this new kind of sensor data to traditional business information is crucial for enterprises to take advantage of the data's full potential. In this paper, we present a demo which allows experiencing this data integration, both vertically between technical and business contexts and horizontally along the value chain. The tool simulates a manufacturing company, continuously producing both business and sensor data, and supports issuing ad-hoc queries that answer specific questions related to the business. In order to adapt to different environments, users can configure sensor characteristics to their needs.}, language = {en} } @misc{BenderGrumGronauetal.2019, author = {Bender, Benedict and Grum, Marcus and Gronau, Norbert and Alfa, Attahiru and Maharaj, B. T.}, title = {Design of a worldwide simulation system for distributed cyber-physical production networks}, series = {2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC)}, journal = {2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-7281-3401-7}, issn = {2334-315X}, doi = {10.1109/ICE.2019.8792609}, pages = {7}, year = {2019}, abstract = {Modern production infrastructures of globally operating companies usually consist of multiple distributed production sites. While the organization of individual sites consisting of Industry 4.0 components itself is demanding, new questions regarding the organization and allocation of resources emerge considering the total production network. In an attempt to face the challenge of efficient distribution and processing both within and across sites, we aim to provide a hybrid simulation approach as a first step towards optimization. Using hybrid simulation allows us to include real and simulated concepts and thereby benchmark different approaches with reasonable effort. A simulation concept is conceptualized and demonstrated qualitatively using a global multi-site example.}, language = {en} }