@article{ZhaoXiaWuetal.2018, author = {Zhao, Liming and Xia, Yan and Wu, Xiao-Yuan and Schippers, Jos H. M. and Jing, Hai-Chun}, title = {Phenotypic analysis and molecular markers of leaf senescence}, series = {Plant Senescence: Methods and Protocols}, volume = {1744}, journal = {Plant Senescence: Methods and Protocols}, publisher = {Humana Press Inc.}, address = {Totowa}, isbn = {978-1-4939-7672-0}, issn = {1064-3745}, doi = {10.1007/978-1-4939-7672-0_3}, pages = {35 -- 48}, year = {2018}, abstract = {The process of leaf senescence consists of the final stage of leaf development. It has evolved as a mechanism to degrade macromolecules and micronutrients and remobilize them to other developing parts of the plant; hence it plays a central role for the survival of plants and crop production. During senescence, a range of physiological, morphological, cellular, and molecular events occur, which are generally referred to as the senescence syndrome that includes several hallmarks such as visible yellowing, loss of chlorophyll and water content, increase of ion leakage and cell death, deformation of chloroplast and cell structure, as well as the upregulation of thousands of so-called senescence-associated genes (SAGs) and downregulation of photosynthesis-associated genes (PAGs). This chapter is devoted to methods characterizing the onset and progression of leaf senescence at the morphological, physiological, cellular, and molecular levels. Leaf senescence normally progresses in an age-dependent manner but is also induced prematurely by a variety of environmental stresses in plants. Focused on the hallmarks of the senescence syndrome, a series of protocols is described to asses quantitatively the senescence process caused by developmental cues or environmental perturbations. We first briefly describe the senescence process, the events associated with the senescence syndrome, and the theories and methods to phenotype senescence. Detailed protocols for monitoring senescence in planta and in vitro, using the whole plant and the detached leaf, respectively, are presented. For convenience, most of the protocols use the model plant species Arabidopsis and rice, but they can be easily extended to other plants.}, language = {en} } @article{WatanabeTohgeBalazadehetal.2018, author = {Watanabe, Mutsumi and Tohge, Takayuki and Balazadeh, Salma and Erban, Alexander and Giavalisco, Patrick and Kopka, Joachim and Mueller-Roeber, Bernd and Fernie, Alisdair R. and Hoefgen, Rainer}, title = {Comprehensive Metabolomics Studies of Plant Developmental Senescence}, series = {Plant Senescence: Methods and Protocols}, volume = {1744}, journal = {Plant Senescence: Methods and Protocols}, publisher = {Humana Press}, address = {Totowa}, isbn = {978-1-4939-7672-0}, issn = {1064-3745}, doi = {10.1007/978-1-4939-7672-0_28}, pages = {339 -- 358}, year = {2018}, abstract = {Leaf senescence is an essential developmental process that involves diverse metabolic changes associated with degradation of macromolecules allowing nutrient recycling and remobilization. In contrast to the significant progress in transcriptomic analysis of leaf senescence, metabolomics analyses have been relatively limited. A broad overview of metabolic changes during leaf senescence including the interactions between various metabolic pathways is required to gain a better understanding of the leaf senescence allowing to link transcriptomics with metabolomics and physiology. In this chapter, we describe how to obtain comprehensive metabolite profiles and how to dissect metabolic shifts during leaf senescence in the model plant Arabidopsis thaliana. Unlike nucleic acid analysis for transcriptomics, a comprehensive metabolite profile can only be achieved by combining a suite of analytic tools. Here, information is provided for measurements of the contents of chlorophyll, soluble proteins, and starch by spectrophotometric methods, ions by ion chromatography, thiols and amino acids by HPLC, primary metabolites by GC/TOF-MS, and secondary metabolites and lipophilic metabolites by LC/ESI-MS. These metabolite profiles provide a rich catalogue of metabolic changes during leaf senescence, which is a helpful database and blueprint to be correlated to future studies such as transcriptome and proteome analyses, forward and reverse genetic studies, or stress-induced senescence studies.}, language = {en} } @phdthesis{Wang2022, author = {Wang, Yang}, title = {Role of the actin cytoskeleton in cellular morphogenesis at the shoot apical meristem of Arabidopsis thaliana}, doi = {10.25932/publishup-55908}, school = {Universit{\"a}t Potsdam}, pages = {130}, year = {2022}, abstract = {The morphogenesis of sessile plants is mainly driven by directional cell growth and cell division. The organization of their cytoskeleton and the mechanical properties of the cell wall greatly influence morphogenetic events in plants. It is well known that cortical microtubules (CMTs) contribute to directional growth by regulating the deposition of the cellulose microfibrils, as major cell wall fortifying elements. More recent findings demonstrate that mechanical stresses existing in cells and tissues influence microtubule organization. Also, in dividing cells, mechanical stress directions contribute to the orientation of the new cell wall. In comparison to the microtubule cytoskeleton, the role of the actin cytoskeleton in regulating shoot meristem morphogenesis has not been extensively studied. This thesis focuses on the functional relevance of the actin cytoskeleton during cell and tissue scale morphogenesis in the shoot apical meristem (SAM) of Arabidopsis thaliana. Visualization of transcriptional reporters indicates that ACTIN2 and ACTIN7 are two highly expressed actin genes in the SAM. A link between the actin cytoskeleton and SAM development derives from the observation that the act2-1 act7-1 double mutant has abnormal cell shape and perturbed phyllotactic patterns. Live-cell imaging of the actin cytoskeleton further shows that its organization correlates with cell shape, which indicates a potential role of actin in influencing cellular morphogenesis. In this thesis, a detailed characterization of the act2-1 act7-1 mutant reveals that perturbation of actin leads to more rectangular cellular geometries with more 90° cell internal angles, and higher incidences of four-way junctions (four cell boundaries intersecting together). This observation deviates from the conventional tricellular junctions found in epidermal cells. Quantitative cellular-level growth data indicates that such differences in the act2-1 act7-1 mutant arise due to the reduced accuracy in the placement of the new cell wall, as well as its mechanical maturation. Changes in cellular morphology observed in the act2-1 act7-1 mutant result in cell packing defects that subsequently compromise the flow of information among cells in the SAM.}, language = {en} } @article{StreubelFritzTeltowetal.2018, author = {Streubel, Susanna and Fritz, Michael Andre and Teltow, Melanie and Kappel, Christian and Sicard, Adrien}, title = {Successive duplication-divergence mechanisms at the RCO locus contributed to leaf shape diversity in the Brassicaceae}, series = {Development : Company of Biologists}, volume = {145}, journal = {Development : Company of Biologists}, number = {8}, publisher = {Company of Biologists}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.164301}, pages = {10}, year = {2018}, abstract = {Gene duplication is a major driver for the increase of biological complexity. The divergence of newly duplicated paralogs may allow novel functions to evolve, while maintaining the ancestral one. Alternatively, partitioning the ancestral function among paralogs may allow parts of that role to follow independent evolutionary trajectories. We studied the REDUCED COMPLEXITY (RCO) locus, which contains three paralogs that have evolved through two independent events of gene duplication, and which underlies repeated events of leaf shape evolution within the Brassicaceae. In particular, we took advantage of the presence of three potentially functional paralogs in Capsella to investigate the extent of functional divergence among them. We demonstrate that the RCO copies control growth in different areas of the leaf. Consequently, the copies that are retained active in the different Brassicaceae lineages contribute to define the leaf dissection pattern. Our results further illustrate how successive gene duplication events and subsequent functional divergence can increase trait evolvability by providing independent evolutionary trajectories to specialized functions that have an additive effect on a given trait.}, language = {en} } @article{SinghCompartALRawietal.2022, author = {Singh, Aakanksha and Compart, Julia and AL-Rawi, Shadha Abduljaleel and Mahto, Harendra and Ahmad, Abubakar Musa and Fettke, J{\"o}rg}, title = {LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes}, series = {The plant journal}, volume = {111}, journal = {The plant journal}, number = {3}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0960-7412}, doi = {10.1111/tpj.15855}, pages = {819 -- 835}, year = {2022}, abstract = {For starch metabolism to take place correctly, various enzymes and proteins acting on the starch granule surface are crucial. Recently, two non-catalytic starch-binding proteins, pivotal for normal starch turnover in Arabidopsis leaves, namely, EARLY STARVATION 1 (ESV1) and its homolog LIKE EARLY STARVATION 1 (LESV), have been identified. Both share nearly 38\% sequence homology. As ESV1 has been found to influence glucan phosphorylation via two starch-related dikinases, alpha-glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD), through modulating the surface glucan structures of the starch granules and thus affecting starch degradation, we assess the impact of its homolog LESV on starch metabolism. Thus, the 65-kDa recombinant protein LESV and the 50-kDa ESV1 were analyzed regarding their influence on the action of GWD and PWD on the surface of the starch granules. We included starches from various sources and additionally assessed the effect of these non-enzymatic proteins on other starch-related enzymes, such as starch synthases (SSI and SSIII), starch phosphorylases (PHS1), isoamylase and beta-amylase. The data obtained indicate that starch phosphorylation, hydrolyses and synthesis were affected by LESV and ESV1. Furthermore, incubation with LESV and ESV1 together exerted an additive effect on starch phosphorylation. In addition, a stable alteration of the glucan structures at the starch granule surface following treatment with LESV and ESV1 was observed. Here, we discuss all the observed changes that point to modifications in the glucan structures at the surface of the native starch granules and present a model to explain the existing processes.}, language = {en} } @article{ShahnejatBushehriNobmannAlluetal.2016, author = {Shahnejat-Bushehri, Sara and Nobmann, Barbara and Allu, Annapurna Devi and Balazadeh, Salma}, title = {JUB1 suppresses Pseudomonas syringae-induced defense responses through accumulation of DELLA proteins}, series = {Journal of trace elements in medicine and biology}, volume = {11}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier}, address = {Philadelphia}, issn = {1559-2316}, doi = {10.1080/15592324.2016.1181245}, pages = {7}, year = {2016}, abstract = {Phytohormones act in concert to coordinate plant growth and the response to environmental cues. Gibberellins (GAs) are growth-promoting hormones that recently emerged as modulators of plant immune signaling. By regulating the stability of DELLA proteins, GAs intersect with the signaling pathways of the classical primary defense hormones, salicylic acid (SA) and jasmonic acid (JA), thereby altering the final outcome of the immune response. DELLA proteins confer resistance to necrotrophic pathogens by potentiating JA signaling and raise the susceptibility to biotrophic pathogens by attenuating the SA pathway. Here, we show that JUB1, a core element of the GA - brassinosteroid (BR) - DELLA regulatory module, functions as a negative regulator of defense responses against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and mediates the crosstalk between growth and immunity.}, language = {en} } @article{ShahnejatBushehriAlluMehterovetal.2017, author = {Shahnejat-Bushehri, Sara and Allu, Annapurna Devi and Mehterov, Nikolay and Thirumalaikumar, Venkatesh P. and Alseekh, Saleh and Fernie, Alisdair R. and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00214}, pages = {13}, year = {2017}, abstract = {The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species.}, language = {en} } @article{SedaghatmehrThirumalaikumarKamranfaretal.2019, author = {Sedaghatmehr, Mastoureh and Thirumalaikumar, Venkatesh P. and Kamranfar, Iman and Marmagne, Anne and Masclaux-Daubresse, Celine and Balazadeh, Salma}, title = {A regulatory role of autophagy for resetting the memory of heat stress in plants}, series = {Plant, cell \& environment : cell physiology, whole-plant physiology, community physiology}, volume = {42}, journal = {Plant, cell \& environment : cell physiology, whole-plant physiology, community physiology}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0140-7791}, doi = {10.1111/pce.13426}, pages = {1054 -- 1064}, year = {2019}, abstract = {As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self-degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.}, language = {en} } @article{SchroederLissoObataetal.2014, author = {Schroeder, Florian and Lisso, Janina and Obata, Toshihiro and Erban, Alexander and Maximova, Eugenia and Giavalisco, Patrick and Kopka, Joachim and Fernie, Alisdair R. and Willmitzer, Lothar and Muessig, Carsten}, title = {Consequences of induced brassinosteroid deficiency in Arabidopsis leaves}, series = {BMC plant biology}, volume = {14}, journal = {BMC plant biology}, publisher = {BioMed Central}, address = {London}, issn = {1471-2229}, doi = {10.1186/s12870-014-0309-0}, pages = {14}, year = {2014}, abstract = {Background: The identification of brassinosteroid (BR) deficient and BR insensitive mutants provided conclusive evidence that BR is a potent growth-promoting phytohormone. Arabidopsis mutants are characterized by a compact rosette structure, decreased plant height and reduced root system, delayed development, and reduced fertility. Cell expansion, cell division, and multiple developmental processes depend on BR. The molecular and physiological basis of BR action is diverse. The BR signalling pathway controls the activity of transcription factors, and numerous BR responsive genes have been identified. The analysis of dwarf mutants, however, may to some extent reveal phenotypic changes that are an effect of the altered morphology and physiology. This restriction holds particularly true for the analysis of established organs such as rosette leaves. Results: In this study, the mode of BR action was analysed in established leaves by means of two approaches. First, an inhibitor of BR biosynthesis (brassinazole) was applied to 21-day-old wild-type plants. Secondly, BR complementation of BR deficient plants, namely CPD (constitutive photomorphogenic dwarf)-antisense and cbb1 (cabbage1) mutant plants was stopped after 21 days. BR action in established leaves is associated with stimulated cell expansion, an increase in leaf index, starch accumulation, enhanced CO2 release by the tricarboxylic acid cycle, and increased biomass production. Cell number and protein content were barely affected. Conclusion: Previous analysis of BR promoted growth focused on genomic effects. However, the link between growth and changes in gene expression patterns barely provided clues to the physiological and metabolic basis of growth. Our study analysed comprehensive metabolic data sets of leaves with altered BR levels. The data suggest that BR promoted growth may depend on the increased provision and use of carbohydrates and energy. BR may stimulate both anabolic and catabolic pathways.}, language = {en} } @article{RuprechtMutwilSaxeetal.2011, author = {Ruprecht, Colin and Mutwil, Marek and Saxe, Friederike and Eder, Michaela and Nikoloski, Zoran and Persson, Staffan}, title = {Large-scale co-expression approach to dissect secondary cell wall formation across plant species}, series = {Frontiers in plant science}, volume = {2}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2011.00023}, pages = {13}, year = {2011}, abstract = {Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA) complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAsin Arabidopsis, barley, rice, poplar, soybean, Medicago, and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation, and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.}, language = {en} }