@article{AltafimAltafimQiuetal.2012, author = {Altafim, Ruy Alberto Pisani and Altafim, Ruy Alberto Pisani and Qiu, Xunlin and Raabe, Sebastian and Wirges, Werner and Basso, Heitor Cury and Gerhard, Reimund}, title = {Fluoropolymer piezoelectrets with tubular channels resonance behavior controlled by channel geometry}, series = {Applied physics : A, Materials science \& processing}, volume = {107}, journal = {Applied physics : A, Materials science \& processing}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-012-6848-z}, pages = {965 -- 970}, year = {2012}, abstract = {Ferro- or piezoelectrets are dielectric materials with two elastically very different macroscopic phases and electrically charged interfaces between them. One of the newer piezoelectret variants is a system of two fluoroethylenepropylene (FEP) films that are first laminated around a polytetrafluoroethylene (PTFE) template. Then, by removing the PTFE template, a two-layer FEP structure with open tubular channels is obtained. After electrical charging, the channels form easily deformable macroscopic electric dipoles whose changes under mechanical or electrical stress lead to significant direct or inverse piezoelectricity, respectively. Here, different PTFE templates are employed to generate channel geometries that vary in height or width. It is shown that the control of the channel geometry allows a direct adjustment of the resonance frequencies in the tubular-channel piezoelectrets. By combining several different channel widths in a single ferroelectret, it is possible to obtain multiple resonance peaks that may lead to a rather flat frequency-response region of the transducer material. A phenomenological relation between the resonance frequency and the geometrical parameters of a tubular channel is also presented. This relation may help to design piezoelectrets with a specific frequency response.}, language = {en} } @article{WirgesRaabeQiu2012, author = {Wirges, Werner and Raabe, Sebastian and Qiu, Xunlin}, title = {Dielectric elastomer and ferroelectret films combined in a single device how do they reinforce each other?}, series = {Applied physics : A, Materials science \& processing}, volume = {107}, journal = {Applied physics : A, Materials science \& processing}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-012-6833-6}, pages = {583 -- 588}, year = {2012}, abstract = {Dielectric elastomers (DE) are soft polymer materials exhibiting large deformations under electrostatic stress. When a prestretched elastomer is stuck to a flat plastic frame, a complex structure that can be used as an actuator (DEA) is formed due to self-organization and energy minimization. Here, such a DEA was equipped with a ferroelectret film. Ferroelectrets are internally charged polymer foams or void-containing polymer-film systems combining large piezoelectricity with mechanical flexibility and elastic compliance. In their dielectric spectra, ferroelectrets show piezoelectric resonances that can be used to analyze their electromechanical properties. The antiresonance frequencies ( ) of ferroelectret films not only are directly related to their geometric parameters, but also are sensitive to the boundary conditions during measurement. In this paper, a fluoroethylenepropylene (FEP) ferroelectret film with tubular void channels was glued to a plastic frame prior to the formation of self-organized minimum-energy DEA structure. The dielectric resonance spectrum (DRS) of the ferroelectret film was measured in-situ during the actuation of the DEA under applied voltage. It is found that the antiresonance frequency is a monotropic function of the bending angle of the actuator. Therefore, the actuation of DEAs can be used to modulate the of ferroelectrets, while the can also be taken for in-situ diagnosis and for precise control of the actuation of the DEA. Combination of DEAs and ferroelectrets brings a number of possibilities for application.}, language = {en} }