@article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Decerprit, G. and Dickherber, R. and Duke, C. and Dumm, J. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nunez, P. D. and Ong, R. A. and Orr, M. and Otte, A. N. and Pandel, D. and Park, N. and Perkins, J. S. and Pohl, M. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vincent, S. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Veritas observations of the nova in V407 CYGNI}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {754}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/754/1/77}, pages = {7}, year = {2012}, abstract = {We report on very high energy (E > 100 GeV) gamma-ray observations of V407 Cygni, a symbiotic binary that underwent a nova outburst producing 0.1-10 GeV gamma rays during 2010 March 10-26. Observations were made with the Very Energetic Radiation Imaging Telescope Array System during 2010 March 19-26 at relatively large zenith angles due to the position of V407 Cyg. An improved reconstruction technique for large zenith angle observations is presented and used to analyze the data. We do not detect V407 Cygni and place a differential upper limit on the flux at 1.6 TeV of 2.3 x 10(-12) erg cm(-2) s(-1) (at the 95\% confidence level). When considered jointly with data from Fermi-LAT, this result places limits on the acceleration of very high energy particles in the nova.}, language = {en} } @article{CamposPelisoliKamannetal.2018, author = {Campos, Fabiola and Pelisoli, Ingrid Domingos and Kamann, Sebastian and Husser, T. -O. and Dreizler, S. and Bellini, A. and Robinson, E. L. and Nardiello, Domenico and Piotto, G. and Kepler, S. O. and Istrate, A. G. and Winget, D. E. and Montgomery, M. H. and Dotter, A.}, title = {Outliers}, series = {Monthly notices of the Royal Astronomical Society}, volume = {481}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2591}, pages = {4397 -- 4409}, year = {2018}, abstract = {We use Hubble Space Telescope multicolour photometry of the globular cluster 47 Tucanae to uncover a population of 24 objects with no previous classification that are outliers from the single-star model tracks in the colour-magnitude diagram and yet are likely cluster members. By comparing those sources with evolutionary models and X-ray source catalogues, we were able to show that the majority of those sources are likely binary systems that do not have any X-ray source detected nearby, most possibly formed by a white dwarf and a main-sequence star and a small number of possible double-degenerate systems.}, language = {en} } @article{FusilloTremblayGaensickeetal.2018, author = {Fusillo, Nicola Pietro Gentile and Tremblay, Pier-Emmanuel and G{\"a}nsicke, Boris T. and Manser, Christopher J. and Cunningham, Tim and Cukanovaite, Elena and Hollands, Mark and Marsh, Thomas and Raddi, Roberto and Jordan, Stefan and Toonen, Silvia and Geier, Stephan and Barstow, Martin and Cummings, Jeffrey D.}, title = {A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS}, series = {Monthly notices of the Royal Astronomical Society}, volume = {482}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty3016}, pages = {4570 -- 4591}, year = {2018}, abstract = {We present a catalogue of white dwarf candidates selected from the second data release of Gaia (DR2). We used a sample of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey (SDSS) to map the entire space spanned by these objects in the Gaia Hertzsprung-Russell diagram. We then defined a set of cuts in absolute magnitude, colour, and a number of Gaia quality flags to remove the majority of contaminating objects. Finally, we adopt a method analogous to the one presented in our earlier SDSS photometric catalogues to calculate a probability of being a white dwarf (PWD) for all Gaia sources that passed the initial selection. The final catalogue is composed of 486641 stars with calculated PWD from which it is possible to select a sample of ≃260000 high-confidence white dwarf candidates in the magnitude range 8 < G < 21. By comparing this catalogue with a sample of SDSS white dwarf candidates, we estimate an upper limit in completeness of 85 per cent for white dwarfs with G ≤ 20 mag and Teff >7000 K, at high Galactic latitudes (|b| > 20°). However, the completeness drops at low Galactic latitudes, and the magnitude limit of the catalogue varies significantly across the sky as a function of Gaia's scanning law. We also provide the list of objects within our sample with available SDSS spectroscopy. We use this spectroscopic sample to characterize the observed structure of the white dwarf distribution in the H-R diagram.}, language = {en} } @article{GriggioBedinRaddietal.2022, author = {Griggio, Massimo and Bedin, Luigi R. and Raddi, Roberto and Reindl, Nicole and Tomasella, Lina and Scalco, M. and Salaris, M. and Cassisi, S. and Ochner, P. and Ciroi, S. and Rosati, P. and Nardiello, Domenico and Anderson, J. and Libralato, Mattia and Bellini, A. and Vallenari, A. and Spina, L. and Pedani, M.}, title = {Astro-photometric study of M37 with Gaia and wide-field ugi-imaging}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1920}, pages = {1841 -- 1853}, year = {2022}, abstract = {We present an astrometric and photometric wide-field study of the Galactic open star cluster M37 (NGC 2099). The studied field was observed with ground-based images covering a region of about four square degrees in the Sloan-like filters ugi. We exploited the Gaia catalogue to calibrate the geometric distortion of the large field mosaics, developing software routines that can be also applied to other wide-field instruments. The data are used to identify the hottest white dwarf (WD) member candidates of M37. Thanks to the Gaia EDR3 exquisite astrometry we identified seven such WD candidates, one of which, besides being a high-probability astrometric member, is the putative central star of a planetary nebula. To our knowledge, this is a unique object in an open cluster, and we have obtained follow-up low-resolution spectra that are used for a qualitative characterization of this young WD. Finally, we publicly release a three-colour atlas and a catalogue of the sources in the field of view, which represents a complement of existing material.}, language = {en} } @article{HamaguchiOskinovaRusselletal.2016, author = {Hamaguchi, K. and Oskinova, Lida and Russell, C. M. P. and Petre, R. and Enoto, T. and Morihana, K. and Ishida, M.}, title = {DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {832}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/832/2/140}, pages = {33 -- 49}, year = {2016}, abstract = {detected six rapid X-ray spectral hardening events called "softness dips" in a similar to 100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either similar to 40\% or similar to 70\% partial covering absorption to kT similar to 12 keV plasma emission by matter with a neutral hydrogen column density of similar to(2-8) x 10(21) cm(-2), while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the.. Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT similar to 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past.}, language = {en} } @article{MoesenlechnerPaunzenPelisolietal.2021, author = {M{\"o}senlechner, Gerald and Paunzen, Ernst and Pelisoli, Ingrid D. and Seelig, Joseph and Stidl, Sarah and Maitzen, Hans Michael}, title = {A Kepler K2 view of subdwarf A-type stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {657}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202037789}, pages = {11}, year = {2021}, abstract = {Context. The spectroscopic class of subdwarf A-type (sdA) stars has come into focus in recent years because of their possible link to extremely low-mass white dwarfs, a rare class of objects resulting from binary evolution. Although most sdA stars are consistent with metal-poor halo main-sequence stars, the formation and evolution of a fraction of these stars are still matters of debate. Aims. The identification of photometric variability can help to put further constraints on the evolutionary status of sdA stars, in particular through the analysis of pulsations. Moreover, the binary ratio, which can be deduced from eclipsing binaries and ellipsoidal variables, is important as input for stellar models. In order to search for variability due to either binarity or pulsations in objects of the spectroscopic sdA class, we have extracted all available high precision light curves from the Kepler K2 mission. Methods. We have performed a thorough time series analysis on all available light curves, employing three different methods. Frequencies with a signal-to-noise ratio higher than four have been used for further analysis. Results. From the 25 targets, 13 turned out to be variables of different kinds (i.e., classical pulsating stars, ellipsoidal and cataclysmic variables, eclipsing binaries, and rotationally induced variables). For the remaining 12 objects, a variability threshold was determined.}, language = {en} } @article{NeunteufelPreeceKruckowetal.2022, author = {Neunteufel, Patrick and Preece, H. and Kruckow, Matthias U. and Geier, Stephan and Hamers, Adrian S. and Justham, S. and Podsiadlowski, Philipp}, title = {Properties and applications of a predicted population of runaway He-sdO/B stars ejected from single degenerate He-donor SNe}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {663}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142864}, pages = {26}, year = {2022}, abstract = {Context. Thermonuclear supernovae (SNe), a subset of which are the highly important SNe of Type Ia and Iax, are relatively poorly understood phenomena. One of the more promising scenarios leading up to the creation of a thermonuclear SN involves accretion of helium-rich material from a binary companion. Following the SN, the binary companion is then ejected from the location of the progenitor binary at velocities possibly large enough to unbind it from the gravitational potential of the Galaxy. Ejected companion stars should form a detectable population, if their production mechanism is not exceedingly rare. Aims. This study builds on previous works, producing the most extensive prediction of the properties of such a hypothetical population to date, taking both Chandrasekhar and non-Chandrasekhar mass events into account. These results are then used to define criteria for membership of this population and characterise putative subpopulations. Methods. This study contains 6 x 10(6) individual ejection trajectories out of the Galactic plane calculated with the stellar kinematics framework SHyRT, which are analysed with regard to their bulk observational properties. These are then put into context with the only previously identified population member US 708 and applied to a number of other possible candidate objects. Results. We find that two additional previously observed objects possess properties to warrant a designation as candidate objects. Characterisation of these object with respect to the predicted population finds all of them to be extreme in at least one astrometric observable. Higher mass ( >0 :7 M-circle dot) objects should be over-represented in the observationally accessible volume, with the ratio of bound to unbound objects being an accessible observable for the determination of the dominant terminal accretor mass. We find that current observations of runaway candidates within 10 kpc support a Galactic SN rate of the order of similar to 3 x 10(-7) yr(-1) to similar to 2 x 10(-6) yr(-1), three orders of magnitude below the inferred Galactic SN Ia rate and two orders of magnitude below the formation rate of predicted He-donor progenitors. Conclusions. The number of currently observed population members suggests that the He-donor scenario, as suspected before, is not a dominant contributor to the number of observed SNe Ia. However, even at the low event rate suggested, we find that the majority of possibly detectable population members is still undetected. The extreme nature of current population members suggests that a still larger number of objects has simply evaded detection up to this point, hinting at a higher contribution than is currently supported by observation.}, language = {en} } @article{PelisoliVos2019, author = {Pelisoli, Ingrid Domingos and Vos, Joris}, title = {Gaia Data Release 2 catalogue of extremely low-mass white dwarf candidates}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1876}, pages = {2892 -- 2903}, year = {2019}, abstract = {Extremely low-mass white dwarf stars (ELMs) are M < 0.3 M-circle dot helium-core white dwarfs born either as a result of a common-envelope phase or after a stable Roche lobe overflow episode in a multiple system. The Universe is not old enough for ELMs to have formed through single-star evolution channels. As remnants of binary evolution, ELMs can shed light onto the poorly understood phase of common-envelope evolution and provide constraints to the physics of mass accretion. Most known ELMs will merge in less than a Hubble time, providing an important contribution to the signal to be detected by upcoming space-based gravitational wave detectors. There are currently less than 150 known ELMs; most were selected by colour, focusing on hot objects, in a magnitude-limited survey of the Northern hemisphere only. Recent theoretical models have predicted a much larger space density for ELMs than estimated observationally based on this limited sample. In order to perform meaningful comparisons with theoretical models and test their predictions, a larger well-defined sample is required. In this work, we present a catalogue of ELM candidates selected from the second data release of Gaia (DR2). We have used predictions from theoretical models and analysed the properties of the known sample to map the space spanned by ELMs in the Gaia Hertzsprung-Russell diagram. Defining a set of colour cuts and quality flags, we have obtained a final sample of 5762 ELM candidates down to T-eff approximate to 5000 K.}, language = {en} } @article{RaddiHollandsKoesteretal.2019, author = {Raddi, Roberto and Hollands, M. A. and Koester, D. and Hermes, J. J. and Gansicke, B. T. and Heber, Ulrich and Shen, Ken J. and Townsley, D. M. and Pala, Anna Francesca and Reding, J. S. and Toloza, O. F. and Pelisoli, Ingrid Domingos and Geier, Stephan and Fusillo, Nicola Pietro Gentile and Munari, Ullisse and Strader, J.}, title = {Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae}, series = {Monthly notices of the Royal Astronomical Society}, volume = {489}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1618}, pages = {1489 -- 1508}, year = {2019}, abstract = {We report the discovery of three stars that, along with the prototype LP 40-365, form a distinct class of chemically peculiar runaway stars that are the survivors of thermonuclear explosions. Spectroscopy of the four confirmed LP 40-365 stars finds ONe-dominated atmospheres enriched with remarkably similar amounts of nuclear ashes of partial O- and Si-burning. Kinematic evidence is consistent with ejection from a binary supernova progenitor; at least two stars have rest-frame velocities indicating they are unbound to the Galaxy. With masses and radii ranging between 0.20 and 0.28M(circle dot) and between 0.16 and 0.60 R-circle dot, respectively, we speculate these inflated white dwarfs are the partly burnt remnants of either peculiar Type Iax or electron-capture supernovae. Adopting supernova rates from the literature, we estimate that similar to 20 LP 40-365 stars brighter than 19 mag should be detectable within 2 kpc from the Sun at the end of the Gaia mission. We suggest that as they cool, these stars will evolve in their spectroscopic appearance, and eventually become peculiar O-rich white dwarfs. Finally, we stress that the discovery of new LP 40-365 stars will be useful to further constrain their evolution, supplying key boundary conditions to the modelling of explosion mechanisms, supernova rates, and nucleosynthetic yields of peculiar thermonuclear explosions.}, language = {en} } @article{ReindlGeierOstensen2018, author = {Reindl, Nicole and Geier, Stephan and Ostensen, R. H.}, title = {Discovery of two bright DO-type white dwarfs}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1875}, pages = {1211 -- 1217}, year = {2018}, abstract = {We discovered two bright DO-type white dwarfs, GALEXJ053628.3+544854 (J0536+5448) and GALEXJ231128.0+292935(J2311+2929), which rank among the eight brightest DO-type white dwarfs known. Our non-LTE model atmosphere analysis reveals effective temperatures and surface gravities of T-eff = 80000 +/- 4600K and log g = 8.25 +/- 0.15 for J0536+5448 and T-eff = 69400 +/- 900K and log g = 7.80 +/- 0.06 for J2311+2929. The latter shows a significant amount of carbon in its atmosphere (C = 0.003(-0.002)(+0.005), by mass), while for J0536+5448 we could derive only an upper limit of C < 0.003. Furthermore, we calculated spectroscopic distances for the two stars and found a good agreement with the distances derived from the Gaia parallaxes.}, language = {en} }