@article{AldorettaStLouisRichardsonetal.2016, author = {Aldoretta, E. J. and St-Louis, N. and Richardson, N. D. and Moffat, Anthony F. J. and Eversberg, T. and Hill, G. M. and Shenar, Tomer and Artigau, E. and Gauza, B. and Knapen, J. H. and Kubat, Jiř{\´i} and Kubatova, Brankica and Maltais-Tariant, R. and Munoz, M. and Pablo, H. and Ramiaramanantsoa, T. and Richard-Laferriere, A. and Sablowski, D. P. and Simon-Diaz, S. and St-Jean, L. and Bolduan, F. and Dias, F. M. and Dubreuil, P. and Fuchs, D. and Garrel, T. and Grutzeck, G. and Hunger, T. and Kuesters, D. and Langenbrink, M. and Leadbeater, R. and Li, D. and Lopez, A. and Mauclaire, B. and Moldenhawer, T. and Potter, M. and dos Santos, E. M. and Schanne, L. and Schmidt, J. and Sieske, H. and Strachan, J. and Stinner, E. and Stinner, P. and Stober, B. and Strandbaek, K. and Syder, T. and Verilhac, D. and Waldschlaeger, U. and Weiss, D. and Wendt, A.}, title = {An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134}, series = {Monthly notices of the Royal Astronomical Society}, volume = {460}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1188}, pages = {3407 -- 3417}, year = {2016}, abstract = {During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He ii lambda 5411 emission line, the previously identified period was refined to P = 2.255 +/- 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 +/- 6 d, or similar to 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Delta I center dot a parts per thousand integral 90A degrees was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C iv lambda lambda 5802,5812 and He i lambda 5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He i lambda 5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.}, language = {en} } @article{BalthasarGoemoeryGonzalezManriqueetal.2016, author = {Balthasar, H. and G{\"o}m{\"o}ry, P. and Gonz{\´a}lez Manrique, Sergio Javier and Kuckein, Christoph and Kavka, J. and Kucera, A. and Schwartz, P. and Vaskova, R. and Berkefeld, T. and Collados Vera, M. and Denker, Carsten and Feller, A. and Hofmann, A. and Lagg, A. and Nicklas, H. and Suarez, D. and Pastor Yabar, A. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612432}, pages = {1050 -- 1056}, year = {2016}, abstract = {Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines SiI lambda 1082.7 nm, He I lambda 1083.0 nm, and Ca I lambda 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s(-1) in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the field lines of rising flux tubes, in agreement with earlier results. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} } @article{BonifacioRahmaniWhitmoreetal.2014, author = {Bonifacio, P. and Rahmani, H. and Whitmore, J. B. and Wendt, Martin and Centurion, Martin and Molaro, P. and Srianand, R. and Murphy, M. T. and Petitjean, P. and Agafonova, I. I. and Evans, T. M. and Levshakov, S. A. and Lopez, S. and Martins, C. J. A. P. and Reimers, D. and Vladilo, G.}, title = {Fundamental constants and high-resolution spectroscopy}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312005}, pages = {83 -- 91}, year = {2014}, language = {en} } @article{BoumaRichterFechner2019, author = {Bouma, Sietske Jeltje Deirdre and Richter, Philipp and Fechner, Cora}, title = {A population of high-velocity absorption-line systems residing in the Local Group}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935078}, pages = {12}, year = {2019}, abstract = {Aims. We investigated the ionisation conditions and distances of Galactic high-velocity clouds (HVCs) in the Galactic halo and beyond in the direction of the Local Group (LG) barycentre and anti-barycentre, by studying spectral data of 29 extragalactic background sources obtained with the Cosmic Origins Spectropgraph (COS) installed on the Hubble Space Telescope (HST). Methods. We model column-densities of low, intermediate, and high ions such as Si ii, C ii, Si iii, Si vi, and C iv, and use these data to construct a set of Cloudy ionisation models. Results. In total, we found 69 high-velocity absorption components along the 29 lines of sight. The components in the direction of the LG barycentre span the entire range of studied velocities, 100 less than or similar to vertical bar nu(LSR)vertical bar less than or similar to 400 km s(-1), while those in the anti-barycentre sample have velocities up to about 300 km s(-1). For 49 components, we infer the gas densities. In the direction of the LG barycentre, the gas densities exhibit a wide range from log nH = -3.96 to -2.55, while in the anti-barycentre direction the densities are systematically higher, log nH > -3.25. The barycentre absorbers can be split into two groups based on their density: a high-density group with log nH > -3.54, which can be affected by the Milky Way radiation field, and a low-density group (log nH <= -3.54). The latter has very low thermal pressures of P/k < 7.3 Kcm(-3). Conclusions. Our study shows that part of the absorbers in the LG barycentre direction trace gas at very low gas densities and thermal pressures. These properties indicate that the absorbers are located beyond the virial radius of the Milky Way. Our study also confirms results from earlier, single-sightline studies, suggesting the presence of a metal-enriched intragroup medium filling the LG near its barycentre.}, language = {en} } @article{BoumaRichterWendt2021, author = {Bouma, Sietske Jeltje Deirdre and Richter, Philipp and Wendt, Martin}, title = {The relation between Ly alpha absorbers and local galaxy filaments}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {647}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202039786}, pages = {16}, year = {2021}, abstract = {Context. The intergalactic medium (IGM) is believed to contain the majority of baryons in the universe and to trace the same dark matter structure as galaxies, forming filaments and sheets. Ly alpha absorbers, which sample the neutral component of the IGM, have been extensively studied at low and high redshift, but the exact relation between Ly alpha absorption, galaxies, and the large-scale structure is observationally not well constrained.Aims. In this study, we aim at characterising the relation between Ly alpha absorbers and nearby over-dense cosmological structures (galaxy filaments) at recession velocities Delta v <= 6700 km s(-1) by using archival observational data from various instruments.Methods. We analyse 587 intervening Ly alpha absorbers in the spectra of 302 extragalactic background sources obtained with the Cosmic Origins Spectrograph (COS) installed on the Hubble Space Telescope (HST). We combine the absorption line information with galaxy data of five local galaxy filaments from the V8k catalogue.Results. Along the 91 sightlines that pass close to a filament, we identify 215 (227) Ly alpha absorption systems (components). Among these, 74 Ly alpha systems are aligned in position and velocity with the galaxy filaments, indicating that these absorbers and the galaxies trace the same large-scale structure. The filament-aligned Ly alpha absorbers have a similar to 90\% higher rate of incidence (d?/dz=189 for log N(HI) >= 13.2) and a slightly shallower column density distribution function slope (-beta=-1.47) relative to the general Ly alpha population at z=0, reflecting the filaments' matter over-density. The strongest Ly alpha absorbers are preferentially found near galaxies or close to the axis of a filament, although there is substantial scatter in this relation. Our sample of absorbers clusters more strongly around filament axes than a randomly distributed sample would do (as confirmed by a Kolmogorov-Smirnov test), but the clustering signal is less pronounced than for the galaxies in the filaments.}, language = {en} } @article{DenkerHeibelRendteletal.2016, author = {Denker, Carsten and Heibel, C. and Rendtel, J. and Arlt, K. and Balthasar, H. and Diercke, Andrea and Gonzalez Manrique, Sergio Javier and Hofmann, A. and Kuckein, Christoph and {\"O}nel, H. and Valliappan, Senthamizh Pavai and Staude, J. and Verma, Meetu}, title = {Solar physics at the Einstein Tower}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612442}, pages = {1105 -- 1113}, year = {2016}, language = {en} } @article{DenkerKuckeinVermaetal.2018, author = {Denker, Carsten and Kuckein, Christoph and Verma, Meetu and Manrique Gonzalez, Sergio Javier Gonzalez and Diercke, Andrea and Enke, Harry and Klar, Jochen and Balthasar, Horst and Louis, Rohan E. and Dineva, Ekaterina Ivanova}, title = {High-cadence Imaging and Imaging Spectroscopy at the GREGOR Solar Telescope-A Collaborative Research Environment for High-resolution Solar Physics}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {236}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aab773}, pages = {12}, year = {2018}, abstract = {In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade, reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and the necessity for short exposure times "freezing" the atmospheric seeing, thus enabling ex post facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the "early science" phase with the 1.5 m GREGOR solar telescope (2014-2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored toward image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGOR's post-focus instruments (see http://gregor.aip.de), i.e., the GREGOR Fabry-P{\´e}rot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multidimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for "big data" in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a collaborative research environment (CRE), where computationally intense data and postprocessing tools are colocated and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on virtual observatory (VO) and other community standards and procedures.}, language = {en} } @article{DevarapalliJagirdarPrasadetal.2020, author = {Devarapalli, Shanti Priya and Jagirdar, Rukmini and Prasad, Manjunath R. and Thomas, Vineet S. and Ahmed, Syed Aslam and Gralapally, Raghavendra and Das, Jesmin Permala Lohy}, title = {Comprehensive study of a neglected contact binary TYC 5532-1333-1}, series = {Monthly notices of the Royal Astronomical Society}, volume = {493}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa031}, pages = {1565 -- 1573}, year = {2020}, abstract = {A comprehensive photometric and spectroscopic analysis of the variable TYC 5532-1333-1 (TYC) along with an investigation of its orbital period variation is presented for the first time. The B- and V-band photometric study indicates that TYC is an intermediate contact binary with degree of contact and mass ratio of 34 per cent and similar to 0.24, respectively. The derived equivalent widths from the spectroscopic study of H alpha and Na-I lines reveal phase-dependent variation and mutual correlation. Using the available times of minimum light, an investigation of orbital period variation shows a long-term decrease at a rate of 3.98 x 10(-6) d yr(-1). Expected causes for such decline in the orbital period could be angular momentum loss and a quasi-sinusoidal variation due to light-time effect probably caused by a third-body companion. The minimum mass of the third body (M-3) was derived to be 0.65 M-circle dot. Our presented study is an attempt to evaluate and understand the evolutionary state of above-mentioned neglected contact binary.}, language = {en} } @article{GimenezGarciaShenarTorrejonetal.2016, author = {Gimenez-Garcia, Ana and Shenar, Tomer and Torrejon, J. M. and Oskinova, Lida and Martinez-Nunez, S. and Hamann, Wolf-Rainer and Rodes-Roca, J. J. and Gonz{\´a}lez-Galan, A. and Alonso-Santiago, J. and Gonz{\´a}lez-Fern{\´a}ndez, C. and Bernabeu, Guillermo and Sander, Andreas Alexander Christoph}, title = {Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries}, series = {Siberian Mathematical Journal}, volume = {591}, journal = {Siberian Mathematical Journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527551}, pages = {25}, year = {2016}, abstract = {Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J175442619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 +/- 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (v(infinity) = 1500 km s(-1) in IGR J17544-2619 and v(infinity) = 700 km s(-1) in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.}, language = {en} } @article{GonzalezManriqueKuckeinPastorYabaretal.2016, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Pastor Yabar, A. and Collados Vera, M. and Denker, Carsten and Fischer, C. E. and G{\"o}m{\"o}ry, P. and Diercke, Andrea and Gonzalez, N. Bello and Schlichenmaier, R. and Balthasar, H. and Berkefeld, T. and Feller, A. and Hoch, S. and Hofmann, A. and Kneer, F. and Lagg, A. and Nicklas, H. and Orozco Suarez, D. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Verma, Meetu and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Fitting peculiar spectral profiles in He I 10830 angstrom absorption features}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201512433}, pages = {1057 -- 1063}, year = {2016}, abstract = {The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He i 10830 triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He i 10830 triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub-and supersonic downflow velocities of up to 32 km s(-1) for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} }