@article{CastroFossatiHubrigetal.2015, author = {Castro, Norberto and Fossati, Luca and Hubrig, Swetlana and Simon D{\´i}az, Sergio and Schoeller, Markus and Ilyin, Ilya and Carrol, Thorsten A. and Langer, Norbert and Morel, Thierry and Schneider, Fabian R. N. and Przybilla, Norbert and Herrero, Artemio and de Koter, Alex and Oskinova, Lida and Reisenegger, Andreas and Sana, Hugues}, title = {B fields in OB stars (BOB) Detection of a strong magnetic field in the O9.7 V star HD 54879}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {581}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {BOB Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201425354}, pages = {14}, year = {2015}, abstract = {The number of magnetic stars detected among massive stars is small; nevertheless, the role played by the magnetic field in stellar evolution cannot be disregarded. Links between line profile variability, enhancements/depletions of surface chemical abundances, and magnetic fields have been identified for low-mass B-stars, but for the O-type domain this is almost unexplored. Based on FORS 2 and HARPS spectropolarimetric data, we present the first detection of a magnetic field in HD54879, a single slowly rotating O9.7 V star. Using two independent and different techniques we obtained the firm detection of a surface average longitudinal magnetic field with a maximum amplitude of about 600 G, in modulus. A quantitative spectroscopic analysis of the star with the stellar atmosphere code FASTWIND results in an effective temperature and a surface gravity of 33 000 +/- 1000K and 4.0 +/- 0.1 dex. The abundances of carbon, nitrogen, oxygen, silicon, and magnesium are found to be slightly lower than solar, but compatible within the errors. We investigate line-profile variability in HD54879 by complementing our spectra with spectroscopic data from other recent OB-star surveys. The photospheric lines remain constant in shape between 2009 and 2014, although H alpha shows a variable emission. The H alpha emission is too strong for a standard O9.7 V and is probably linked to the magnetic field and the presence of circumstellar material. Its normal chemical composition and the absence of photospheric line profile variations make HD54879 the most strongly magnetic, non-variable single O-star detected to date.}, language = {en} } @article{FossatiCastroMoreletal.2015, author = {Fossati, Luca and Castro, Norberto and Morel, Thierry and Langer, Norbert and Briquet, Maryline and Carroll, Thorsten Anthony and Hubrig, Swetlana and Nieva, Maria-Fernanda and Oskinova, Lida and Przybilla, Norbert and Schneider, Fabian R. N. and Schoeller, Magnus and Simon D{\´i}az, Sergio and Ilyin, Ilya and de Koter, Alex and Reisenegger, Andreas and Sana, Hugues}, title = {B fields in OB stars (BOB): on the detection of weak magnetic fields in the two early B-type stars beta CMa and epsilon CMa Possible lack of a "magnetic desert" in massive stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {574}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {BOB Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201424986}, pages = {15}, year = {2015}, abstract = {Only a small fraction of massive stars seem to host a measurable structured magnetic field, whose origin is still unknown and whose implications for stellar evolution still need to be assessed. Within the context of the "B fields in OB stars (BOB)" collaboration, we used the HARPSpol spectropolarimeter to observe the early B-type stars beta CMa (HD 44743; B1 II/III) and epsilon CMa (HD 52089; B1.5II) in December 2013 and April 2014. For both stars, we consistently detected the signature of a weak (<30 G in absolute value) longitudinal magnetic field, approximately constant with time. We determined the physical parameters of both stars and characterise their X-ray spectrum. For the beta Cep star beta CMa, our mode identification analysis led to determining a rotation period of 13.6 +/- 1.2 days and of an inclination angle of the rotation axis of 57.6 +/- 1.7 degrees, with respect to the line of sight. On the basis of these measurements and assuming a dipolar field geometry, we derived a best fitting obliquity of about 22 degrees and a dipolar magnetic field strength (B-d) of about 100 G (60 < B-d < 230 G within the 1 sigma level), below what is typically found for other magnetic massive stars. This conclusion is strengthened further by considerations of the star's X-ray spectrum. For epsilon CMa we could only determine a lower limit on the dipolar magnetic field strength of 13 G. For this star, we determine that the rotation period ranges between 1.3 and 24 days. Our results imply that both stars are expected to have a dynamical magnetosphere, so the magnetic field is not able to support a circumstellar disk. We also conclude that both stars are most likely core hydrogen burning and that they have spent more than 2/3 of their main sequence lifetime. A histogram of the distribution of the dipolar magnetic field strength for the magnetic massive stars known to date does not show the magnetic field "desert" observed instead for intermediate-mass stars. The biases involved in the detection of (weak) magnetic fields in massive stars with the currently available instrumentation and techniques imply that weak fields might be more common than currently observed. Our results show that, if present, even relatively weak magnetic fields are detectable in massive stars and that more observational effort is probably still needed to properly access the magnetic field incidence.}, language = {en} } @misc{GvaramadzeKniazevMiroshnichenkoetal.2012, author = {Gvaramadze, V. V. and Kniazev, A. Y. and Miroshnichenko, A. S. and Berdnikov, Leonid N. and Langer, N. and Stringfellow, G. S. and Todt, Helge Tobias and Hamann, Wolf-Rainer and Grebel, E. K. and Buckley, D. and Crause, L. and Crawford, S. and Gulbis, A. and Hettlage, C. and Hooper, E. and Husser, T. -O. and Kotze, P. and Loaring, N. and Nordsieck, K. H. and O'Donoghue, D. and Pickering, T. and Potter, S. and Colmenero, E. Romero and Vaisanen, P. and Williams, T. and Wolf, M. and Reichart, D. E. and Ivarsen, K. M. and Haislip, J. B. and Nysewander, M. C. and LaCluyze, A. P.}, title = {Discovery of two new Galactic candidate luminous blue variables with Wide-field Infrared Survey Explorer}, series = {Monthly notices of the Royal Astronomical Society}, volume = {421}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2012.20556.x}, pages = {3325 -- 3337}, year = {2012}, abstract = {We report the discovery of two new Galactic candidate luminous blue variable (LBV) stars via detection of circular shells (typical of confirmed and candidate LBVs) and follow-up spectroscopy of their central stars. The shells were detected at 22 mu m in the archival data of the Mid-Infrared All Sky Survey carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up optical spectroscopy of the central stars of the shells conducted with the renewed Southern African Large Telescope (SALT) showed that their spectra are very similar to those of the well-known LBVs P Cygni and AG Car, and the recently discovered candidate LBV MN112, which implies the LBV classification for these stars as well. The LBV classification of both stars is supported by detection of their significant photometric variability: one of them brightened in the R and I bands by 0.68 +/- 0.10 and 0.61 +/- 0.04 mag, respectively, during the last 1318 years, while the second one (known as Hen 3-1383) varies its B, V, R, I and Ks brightnesses by similar or equal to 0.50.9 mag on time-scales from 10 d to decades. We also found significant changes in the spectrum of Hen 3-1383 on a time-scale of similar or equal to 3 months, which provides additional support for the LBV classification of this star. Further spectrophotometric monitoring of both stars is required to firmly prove their LBV status. We discuss a connection between the location of massive stars in the field and their fast rotation, and suggest that the LBV activity of the newly discovered candidate LBVs might be directly related to their possible runaway status.}, language = {en} } @article{HajdukTodtHamannetal.2020, author = {Hajduk, Marcin and Todt, Helge Tobias and Hamann, Wolf-Rainer and Borek, Karolina and van Hoof, Peter A. M. and Zijlstra, Albert A.}, title = {The cooling-down central star of the planetary nebula SwSt 1}, series = {Monthly notices of the Royal Astronomical Society}, volume = {498}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa2274}, pages = {1205 -- 1220}, year = {2020}, abstract = {SwSt 1 (PN G001.5-06.7) is a bright and compact planetary nebula containing a late [WC]-type central star. Previous studies suggested that the nebular and stellar lines are slowly changing with time. We studied new and archival optical and ultraviolet spectra of the object. The [O III] 4959 and 5007 angstrom to H beta line flux ratios decreased between about 1976 and 1997/2015. The stellar spectrum also shows changes between these epochs. We modelled the stellar and nebular spectra observed at different epochs. The analyses indicate a drop of the stellar temperature from about 42 kK to 40.5 kK between 1976 and 1993. We do not detect significant changes between 1993 and 2015. The observations show that the star performed a loop in the H-R diagram. This is possible when a shell source is activated during its post-AGB evolution. We infer that a late thermal pulse (LTP) experienced by a massive post-AGB star can explain the evolution of the central star. Such a star does not expand significantly as the result of the LTP and does not became a born-again red giant. However, the released energy can remove the tiny H envelope of the star.}, language = {en} } @article{HamannGraefenerLiermannetal.2019, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G. and Liermann, A. and Hainich, Rainer and Sander, Andreas Alexander Christoph and Shenar, Tomer and Ramachandran, Varsha and Todt, Helge Tobias and Oskinova, Lida}, title = {The Galactic WN stars revisited}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834850}, pages = {11}, year = {2019}, abstract = {Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e. the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the "absolute" parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2) of trigonometric parallaxes includes nearly all WN stars of our Galactic sample. In the present paper, we apply the new distances to the previously analyzed Galactic WN stars and rescale the results accordingly. On this basis, we present a revised catalog of 55 Galactic WN stars with their stellar and wind parameters. The correlations between mass-loss rate and luminosity show a large scatter, for the hydrogen-free WN stars as well as for those with detectable hydrogen. The slopes of the log L - log M correlations are shallower than found previously. The empirical Hertzsprung-Russell diagram (HRD) still shows the previously established dichotomy between the hydrogen-free early WN subtypes that are located on the hot side of the zero-age main sequence (ZAMS), and the late WN subtypes, which show hydrogen and reside mostly at cooler temperatures than the ZAMS (with few exceptions). However, with the new distances, the distribution of stellar luminosities became more continuous than obtained previously. The hydrogen-showing stars of late WN subtype are still found to be typically more luminous than the hydrogen-free early subtypes, but there is a range of luminosities where both subclasses overlap. The empirical HRD of the Galactic single WN stars is compared with recent evolutionary tracks. Neither these single-star evolutionary models nor binary scenarios can provide a fully satisfactory explanation for the parameters of these objects and their location in the HRD.}, language = {en} } @article{KurfuerstFeldmeierKrticka2014, author = {Kurfuerst, P. and Feldmeier, Achim and Krticka, Jiri}, title = {Time-dependent modeling of extended thin decretion disks of critically rotating stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {569}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201424272}, pages = {7}, year = {2014}, abstract = {Context. During their evolution massive stars can reach the phase of critical rotation when a further increase in rotational speed is no longer possible. Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. Aims. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. Methods. We calculated stationary models using the Newton-Raphson method. For time-dependent hydrodynamic modeling we developed the numerical code based on an explicit finite difference scheme on an Eulerian grid including full Navier-Stokes shear viscosity. Results. The sonic point distance and the maximum angular momentum loss rate strongly depend on the temperature profile and are almost independent of viscosity. The rotational velocity at large radii rapidly drops accordingly to temperature and viscosity distribution. The total amount of disk mass and the disk angular momentum increase with decreasing temperature and viscosity. Conclusions. The time-dependent one-dimensional models basically confirm the results obtained in the stationary models as well as the assumptions of the analytical approximations. Including full Navier-Stokes viscosity we systematically avoid the rotational velocity sign change at large radii. The unphysical drop of the rotational velocity and angular momentum loss at large radii (present in some models) can be avoided in the models with decreasing temperature and viscosity.}, language = {en} } @article{KurfuerstFeldmeierKrticka2018, author = {Kurf{\"u}rst, P. and Feldmeier, Achim and Krticka, Jiri}, title = {Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {613}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731300}, pages = {24}, year = {2018}, abstract = {Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than (M) over dot greater than or similar to 10(-10) M-circle dot yr(-1). In the models of dense viscous disks with (M) over dot > 10(-8) M-circle dot yr(-1), the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.}, language = {en} } @article{LoeblingRauchBertolamiMilleretal.2019, author = {L{\"o}bling, Lisa and Rauch, Thomas and Bertolami Miller, Marcelo Miguel and Todt, Helge Tobias and Friederich, F. and Ziegler, M. and Werner, Klaus and Kruk, J. W.}, title = {Spectral analysis of the hybrid PG 1159-type central stars of the planetary nebulae Abell 43 and NGC7094}, series = {Monthly notices of the Royal Astronomical Society}, volume = {489}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1994}, pages = {1054 -- 1071}, year = {2019}, abstract = {Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the Herich material with the H-rich envelope. According to stellar evolution models the result is a star with a surface composition of H approximate to 20 per cent by mass (AFTP), approximate to 1 per cent (LTP), or (almost) no H (VLTP). Since FTP stars exhibit intershell material at their surface, spectral analyses establish constraints for AGB nucleosynthesis and stellar evolution. We performed a spectral analysis of the so-called hybrid PG 1159-type central stars (CS) of the planetary nebulae Abell 43 and NGC7094 by means of non-local thermodynamical equilibrium models. We confirm the previously determined effective temperatures of T-eff = 115 000 +/- 5 000K and determine surface gravities of log (g /(cm s(-2))) = 5.6 +/- 0.1 for both. From a comparison with AFTP evolutionary tracks, we derive stellar masses of 0.57(-0.04)(+0.07)M(circle dot) and determine the abundances of H, He, and metals up to Xe. Both CS are likely AFTP stars with a surface H mass fraction of 0.25 +/- 0.03 and 0.15 +/- 0.03, respectively, and an Fe deficiency indicating subsolar initial metallicities. The light metals show typical PG 1159-type abundances and the elemental composition is in good agreement with predictions from AFTP evolutionary models. However, the expansion ages do not agree with evolution time-scales expected from the AFTP scenario and alternatives should be explored.}, language = {en} } @article{MeyerVelazquezPetruketal.2022, author = {Meyer, Dominique M.-A. and Velazquez, Pablo F. and Petruk, Oleh and Chiotellis, Alexandros and Pohl, Martin and Camps-Farina, Artemi and Petrov, Miroslav and Reynoso, Estela M. and Toledo-Roy, Juan C. and Schneiter, E. Matias and Castellanos-Ramirez, Antonio and Esquivel, Alejandro}, title = {Rectangular core-collapse supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1832}, pages = {594 -- 605}, year = {2022}, abstract = {Core-collapse supernova remnants are the gaseous nebulae of galactic interstellar media (ISM) formed after the explosive death of massive stars. Their morphology and emission properties depend both on the surrounding circumstellar structure shaped by the stellar wind-ISM interaction of the progenitor star and on the local conditions of the ambient medium. In the warm phase of the Galactic plane (n approximate to 1 cm(-3), T approximate to 8000 K), an organized magnetic field of strength 7 mu G has profound consequences on the morphology of the wind bubble of massive stars at rest. In this paper, we show through 2.5D magnetohydrodynamical simulations, in the context of a Wolf-Rayet-evolving 35 M 0 star, that it affects the development of its supernova remnant. When the supernova remnant reaches its middle age (15-20 kyr), it adopts a tubular shape that results from the interaction between the isotropic supernova ejecta and the anisotropic, magnetized, shocked stellar progenitor bubble into which the supernova blast wave expands. Our calculations for non-thermal emission, i.e. radio synchrotron and inverse-Compton radiation, reveal that such supernova remnants can, due to projection effects, appear as rectangular objects in certain cases. This mechanism for shaping a supernova remnant is similar to the bipolar and elliptical planetary nebula production by wind-wind interaction in the low-mass regime of stellar evolution. If such a rectangular core-collapse supernova remnant is created, the progenitor star must not have been a runaway star. We propose that such a mechanism is at work in the shaping of the asymmetric core-collapse supernova remnant Puppis A.}, language = {en} } @article{MoesenlechnerPaunzenPelisolietal.2021, author = {M{\"o}senlechner, Gerald and Paunzen, Ernst and Pelisoli, Ingrid D. and Seelig, Joseph and Stidl, Sarah and Maitzen, Hans Michael}, title = {A Kepler K2 view of subdwarf A-type stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {657}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202037789}, pages = {11}, year = {2021}, abstract = {Context. The spectroscopic class of subdwarf A-type (sdA) stars has come into focus in recent years because of their possible link to extremely low-mass white dwarfs, a rare class of objects resulting from binary evolution. Although most sdA stars are consistent with metal-poor halo main-sequence stars, the formation and evolution of a fraction of these stars are still matters of debate. Aims. The identification of photometric variability can help to put further constraints on the evolutionary status of sdA stars, in particular through the analysis of pulsations. Moreover, the binary ratio, which can be deduced from eclipsing binaries and ellipsoidal variables, is important as input for stellar models. In order to search for variability due to either binarity or pulsations in objects of the spectroscopic sdA class, we have extracted all available high precision light curves from the Kepler K2 mission. Methods. We have performed a thorough time series analysis on all available light curves, employing three different methods. Frequencies with a signal-to-noise ratio higher than four have been used for further analysis. Results. From the 25 targets, 13 turned out to be variables of different kinds (i.e., classical pulsating stars, ellipsoidal and cataclysmic variables, eclipsing binaries, and rotationally induced variables). For the remaining 12 objects, a variability threshold was determined.}, language = {en} }