@article{AliHomannKreiseletal.2012, author = {Ali, Mostafa and Homann, Thomas and Kreisel, Janka and Khalil, Mahmoud and Puhlmann, Ralf and Kruse, Hans-Peter and Rawel, Harshadrai Manilal}, title = {Characterization and modeling of the interactions between coffee storage proteins and phenolic compounds}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {60}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/jf303372a}, pages = {11601 -- 11608}, year = {2012}, abstract = {This study addresses the interactions of coffee storage proteins with coffee-specific phenolic compounds. Protein profiles, of Coffea arabica and Coffea canephora (var robusta) were compared. Major Phenolic compounds were extracted and analyzed with appropriate methods. The polyphenol-protein interactions during protein extraction have been addressed by different analytical setups [reversed-phase high-performance liquid chromatography (RP-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS), and Trolox equivalent antioxidant capacity (TEAC) assays], with focus directed toward identification of covalent adduct formation. The results indicate that C. arabica proteins are more susceptible to these interactions and the polyphenol oxidase activity seems to be a crucial factor for the formation of these addition products. A tentative allocation of the modification type and site in the protein has been attempted. Thus, the first available in silico modeling of modified coffee proteins is reported. The extent of these modifications may contribute to the structure and function of "coffee melanoidins" and are discussed in the context of coffee flavor formation.}, language = {en} } @article{NeugartWiesnerReinholdFredeetal.2018, author = {Neugart, Susanne and Wiesner-Reinhold, Melanie and Frede, Katja and Jander, Elisabeth and Homann, Thomas and Rawel, Harshadrai Manilal and Schreiner, Monika and Baldermann, Susanne}, title = {Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp chinensis}, series = {Frontiers in plant science : FPLS}, volume = {9}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2018.00305}, pages = {13}, year = {2018}, abstract = {Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold) and decreased amounts of glucosinolates (up to 4.7-fold) as well as phenolic compounds (up to 1.5-fold).}, language = {en} }