@article{BreitkopfSchlueterXuetal.2013, author = {Breitkopf, Hendrik and Schl{\"u}ter, P. M. and Xu, S. and Schiestl, Florian P. and Cozzolino, S. and Scopece, G.}, title = {Pollinator shifts between Ophrys sphegodes populations: might adaptation to different pollinators drive population divergence?}, series = {Journal of evolutionary biology}, volume = {26}, journal = {Journal of evolutionary biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1010-061X}, doi = {10.1111/jeb.12216}, pages = {2197 -- 2208}, year = {2013}, abstract = {Local adaptation to different pollinators is considered one of the possible initial stages of ecological speciation as reproductive isolation is a by-product of the divergence in pollination systems. However, pollinator-mediated divergent selection will not necessarily result in complete reproductive isolation, because incipient speciation is often overcome by gene flow. We investigated the potential of pollinator shift in the sexually deceptive orchids Ophrys sphegodes and Ophrys exaltata and compared the levels of floral isolation vs. genetic distance among populations with contrasting predominant pollinators. We analysed floral hydrocarbons as a proxy for floral divergence between populations. Floral adoption of pollinators and their fidelity was tested using pollinator choice experiments. Interpopulation gene flow and population differentiation levels were estimated using AFLP markers. The Tyrrhenian O.sphegodes population preferentially attracted the pollinator bee Andrena bimaculata, whereas the Adriatic O.sphegodes population exclusively attracted A.nigroaenea. Significant differences in scent component proportions were identified in O.sphegodes populations that attracted different preferred pollinators. High interpopulation gene flow was detected, but populations were genetically structured at species level. The high interpopulation gene flow levels independent of preferred pollinators suggest that local adaptation to different pollinators has not (yet) generated detectable genome-wide separation. Alternatively, despite extensive gene flow, few genes underlying floral isolation remain differentiated as a consequence of divergent selection. Different pollination ecotypes in O.sphegodes might represent a local selective response imposed by temporal variation in a geographical mosaic of pollinators as a consequence of the frequent disturbance regimes typical of Ophrys habitats.}, language = {en} } @misc{CampbellHofreiter2015, author = {Campbell, Kevin L. and Hofreiter, Michael}, title = {Resurrecting phenotypes from ancient DNA sequences: promises and perspectives}, series = {Canadian journal of zoology = Revue canadienne de zoologie}, volume = {93}, journal = {Canadian journal of zoology = Revue canadienne de zoologie}, number = {9}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {0008-4301}, doi = {10.1139/cjz-2014-0337}, pages = {701 -- 710}, year = {2015}, abstract = {Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller's sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these "living" processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology.}, language = {en} } @article{DellingerEsslHojsgaardetal.2016, author = {Dellinger, Agnes S. and Essl, Franz and Hojsgaard, Diego and Kirchheimer, Bernhard and Klatt, Simone and Dawson, Wayne and Pergl, Jan and Pysek, Petr and van Kleunen, Mark and Weber, Ewald and Winter, Marten and Hoerandl, Elvira and Dullinger, Stefan}, title = {Niche dynamics of alien species do not differ among sexual and apomictic flowering plants}, series = {New phytologist : international journal of plant science}, volume = {209}, journal = {New phytologist : international journal of plant science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.13694}, pages = {1313 -- 1323}, year = {2016}, abstract = {We compiled global occurrence data sets of 13 congeneric sexual and apomictic species pairs, and used principal components analysis (PCA) and kernel smoothers to compare changes in climatic niche optima, breadths and unfilling/expansion between native and alien ranges. Niche change metrics were compared between sexual and apomictic species. All 26 species showed changes in niche optima and/or breadth and 14 species significantly expanded their climatic niches. However, we found no effect of the reproductive system on niche dynamics. Instead, species with narrower native niches showed higher rates of niche expansion in the alien ranges. Our results suggest that niche shifts are frequent in plant invasions but evolutionary potential may not be of major importance for such shifts. Niche dynamics rather appear to be driven by changes of the realized niche without adaptive change of the fundamental climatic niche.}, language = {en} } @article{HeffnerFuhrmeisterLuthraetal.2022, author = {Heffner, Christopher C. and Fuhrmeister, Pamela and Luthra, Sahil and Mechtenberg, Hannah and Saltzman, David and Myers, Emily B.}, title = {Reliability and validity for perceptual flexibility in speech}, series = {Brain and language : a journal of clinical, experimental and theoretical research}, volume = {226}, journal = {Brain and language : a journal of clinical, experimental and theoretical research}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0093-934X}, doi = {10.1016/j.bandl.2021.105070}, pages = {11}, year = {2022}, abstract = {The study of perceptual flexibility in speech depends on a variety of tasks that feature a large degree of variability between participants. Of critical interest is whether measures are consistent within an individual or across stimulus contexts. This is particularly key for individual difference designs that are deployed to examine the neural basis or clinical consequences of perceptual flexibility. In the present set of experiments, we assess the split-half reliability and construct validity of five measures of perceptual flexibility: three of learning in a native language context (e.g., understanding someone with a foreign accent) and two of learning in a non-native context (e.g., learning to categorize non-native speech sounds). We find that most of these tasks show an appreciable level of split-half reliability, although construct validity was sometimes weak. This provides good evidence for reliability for these tasks, while highlighting possible upper limits on expected effect sizes involving each measure.}, language = {en} } @article{HenschkeZecherMayeretal.2021, author = {Henschke, Jakob and Zecher, Mahli Megan and Mayer, Frank and Engel, Tilman}, title = {Contralateral repeated bout effect following preconditioning exercises}, series = {Sport sciences for health}, volume = {18}, journal = {Sport sciences for health}, number = {1}, publisher = {Soringer Italia}, address = {Milan}, issn = {1824-7490}, doi = {10.1007/s11332-021-00804-0}, pages = {1 -- 10}, year = {2021}, abstract = {Background Recent studies indicate the existence of a repeated bout effect on the contralateral untrained limb following eccentric and isometric contractions. Aims This review aims to summarize the evidence for magnitude, duration and differences of this effect following isometric and eccentric preconditioning exercises. Methods Medline, Cochrane, and Web of science were searched from January 1971 until September 2020. Randomized controlled trials, case-control studies and cross-sectional studies were identified by combining keywords and synonyms (e.g., "contralateral", "exercise", "preconditioning", "protective effect"). At least two of the following outcome parameters were mandatory for study inclusion: strength, muscle soreness, muscle swelling, limb circumference, inflammatory blood markers or protective index (relative change of aforementioned measures). Results After identifying 1979 articles, 13 studies were included. Most investigations examined elbow flexors and utilized eccentric isokinetic protocols to induce the contralateral repeated bout effect. The magnitude of protection was observed in four studies, smaller values of the contralateral when compared to the ipsilateral repeated bout effect were noted in three studies. The potential mechanism is thought to be of neural central nature since no differences in peripheral muscle activity were observed. Time course was examined in three investigations. One study showed a smaller protective effect following isometric preconditioning when compared to eccentric preconditioning exercises. Conclusions The contralateral repeated bout effect demonstrates a smaller magnitude and lasts shorter than the ipsilateral repeated bout effect. Future research should incorporate long-term controlled trials including larger populations to identify central mechanisms. This knowledge should be used in clinical practice to prepare immobilized limbs prospectively for an incremental load.}, language = {en} } @article{HodappRabovsky2021, author = {Hodapp, Alice and Rabovsky, Milena}, title = {The N400 ERP component reflects an error-based implicit learning signal during language comprehension}, series = {European journal of neuroscience}, volume = {54}, journal = {European journal of neuroscience}, number = {9}, publisher = {Wiley}, address = {Oxford}, issn = {0953-816X}, doi = {10.1111/ejn.15462}, pages = {7125 -- 7140}, year = {2021}, abstract = {The functional significance of the N400 evoked-response component is still actively debated. An increasing amount of theoretical and computational modelling work is built on the interpretation of the N400 as a prediction error. In neural network modelling work, it was proposed that the N400 component can be interpreted as the change in a probabilistic representation of meaning that drives the continuous adaptation of an internal model of the statistics of the environment. These results imply that increased N400 amplitudes should correspond to greater adaptation, which can be measured via implicit memory. To investigate this model derived hypothesis, the current study manipulated expectancy in a sentence reading task to influence N400 amplitudes and subsequently presented the previously expected vs. unexpected words in a perceptual identification task to measure implicit memory. As predicted, reaction times in the perceptual identification task were significantly faster for previously unexpected words that induced larger N400 amplitudes in the previous sentence reading task. Additionally, it could be demonstrated that this adaptation seems to specifically depend on the process underlying N400 amplitudes, as participants with larger N400 differences during sentence reading also exhibited a larger implicit memory benefit in the perceptual identification task. These findings support the interpretation of the N400 as an implicit learning signal driving adaptation in language processing.}, language = {en} } @article{JehmlichHudsonThieken2020, author = {Jehmlich, Caroline and Hudson, Paul and Thieken, Annegret}, title = {Short contribution on adaptive behaviour of flood-prone companies}, series = {Journal of Flood Risk Management}, volume = {13}, journal = {Journal of Flood Risk Management}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1753-318X}, doi = {10.1111/jfr3.12653}, pages = {7}, year = {2020}, abstract = {Integrated flood management strategies consider property-level precautionary measures as a vital part. Whereas this is a well-researched topic for residents, little is known about the adaptive behaviour of flood-prone companies although they often settle on the ground floor of buildings and are thus among the first affected by flooding. This pilot study analyses flood responses of 64 businesses in a district of the city of Dresden, Germany that experienced major flooding in 2002 and 2013. Using standardised survey data and accompanying qualitative interviews, the analyses revealed that the largest driver of adaptive behaviour is experiencing flood events. Intangible factors such as tradition and a sense of community play a role for the decision to stay in the area, while lacking ownership might hamper property-level adaptation. Further research is also needed to understand the role of insurance and governmental aid for recovery and adaptation of businesses.}, language = {en} } @article{JohnOlasMuellerRoeber2021, author = {John, Sheeba and Olas, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd}, title = {Regulation of alternative splicing in response to temperature variation in plants}, series = {Journal of experimental botany}, volume = {72}, journal = {Journal of experimental botany}, number = {18}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erab232}, pages = {6150 -- 6163}, year = {2021}, abstract = {Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.}, language = {en} } @phdthesis{Kiemel2023, author = {Kiemel, Katrin}, title = {Zooplankton adaptations and community dynamics in space and time}, school = {Universit{\"a}t Potsdam}, year = {2023}, abstract = {In times of ongoing biodiversity loss, understanding how communities are structured and what mechanisms and local adaptations underlie the patterns we observe in nature is crucial for predicting how future ecological and anthropogenic changes might affect local and regional biodiversity. Aquatic zooplankton are a group of primary consumers that represent a critical link in the food chain, providing nutrients for the entire food web. Thus, understanding the adaptability and structure of zooplankton communities is essential. In this work, the genetic basis for the different temperature adaptations of two seasonally shifted (i.e., temperature-dependent) occurring freshwater rotifers of a formerly cryptic species complex (Brachionus calyciflorus) was investigated to understand the overall genetic diversity and evolutionary scenario for putative adaptations to different temperature regimes. Furthermore, this work aimed to clarify to what extent the different temperature adaptations may represent a niche partitioning process thus enabling co-existence. The findings were then embedded in a metacommunity context to understand how zooplankton communities assemble in a kettle hole metacommunity located in the northeastern German "Uckermark" and which underlying processes contribute to the biodiversity patterns we observe. Using a combined approach of newly generated mitochondrial resources (genomes/cds) and the analysis of a candidate gene (Heat Shock Protein 40kDa) for temperature adaptation, I showed that the global representatives of B. calyciflorus s.s.. are genetically more similar than B. fernandoi (average pairwise nucleotide diversity: 0.079 intraspecific vs. 0.257 interspecific) indicating that both species carry different standing genetic variation. In addition to differential expression in the thermotolerant B. calyciflorus s.s. and thermosensitive B. fernandoi, the HSP 40kDa also showed structural variation with eleven fixed and six positively selected sites, some of which are located in functional areas of the protein. The estimated divergence time of ~ 25-29 Myr combined with the fixed sites and a prevalence of ancestral amino acids in B. calyciflorus s.s. indicate that B. calyciflorus s.s. remained in the ancestral niche, while B. fernandoi partitioned into a new niche. The comparison of mitochondrial and nuclear markers (HPS 40kDa, ITS1, COI) revealed a hybridisation event between the two species. However, as hybridisation between the two species is rare, it can be concluded that the temporally isolated niches (i.e., seasonal-shifted occurrence) they inhabit based on their different temperature preferences most likely represent a pre-zygotic isolation mechanism that allows sympatric occurrence while maintaining species boundaries. To determine the processes underlying zooplankton community assembly, a zooplankton metacommunity comprising 24 kettle holes was sampled over a two-year period. Active (i.e., water samples) and dormant communities (i.e., dormant eggs hatched from sediment) were identified using a two-fragment DNA metabarcoding approach (COI and 18S). Species richness and diversity as well as community composition were analysed considering spatial, temporal and environmental parameters. The analysis revealed that environmental filtering based on parameters such as pH, size and location of the habitat patch (i.e., kettle hole) and surrounding field crops largely determined zooplankton community composition (explained variance: Bray-Curtis dissimilarities: 10.5\%; Jaccard dissimilarities: 12.9\%), indicating that adaptation to a particular habitat is a key feature of zooplankton species in this system. While the spatial configuration of the kettle holes played a minor role (explained variance: Bray-Curtis dissimilarities: 2.8\% and Jaccard dissimilarities: 5.5\%), the individual kettle hole sites had a significant influence on the community composition. This suggests monopolisation/priority effects (i.e., dormant communities) of certain species in individual kettle holes. As environmental filtering is the dominating process structuring zooplankton communities, this system could be significantly influenced by future land-use change, pollution and climate change.}, language = {en} } @article{KreibichDiBaldassarreVorogushynetal.2017, author = {Kreibich, Heidi and Di Baldassarre, Giuliano and Vorogushyn, Sergiy and Aerts, Jeroen C. J. H. and Apel, Heiko and Aronica, Giuseppe T. and Arnbjerg-Nielsen, Karsten and Bouwer, Laurens M. and Bubeck, Philip and Caloiero, Tommaso and Chinh, Do T. and Cortes, Maria and Gain, Animesh K. and Giampa, Vincenzo and Kuhlicke, Christian and Kundzewicz, Zbigniew W. and Llasat, Maria Carmen and Mard, Johanna and Matczak, Piotr and Mazzoleni, Maurizio and Molinari, Daniela and Dung, Nguyen V. and Petrucci, Olga and Schr{\"o}ter, Kai and Slager, Kymo and Thieken, Annegret and Ward, Philip J. and Merz, Bruno}, title = {Adaptation to flood risk}, series = {Earth's Future}, volume = {5}, journal = {Earth's Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000606}, pages = {953 -- 965}, year = {2017}, abstract = {As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur.}, language = {en} }