@article{RajuLiebigKlemkeetal.2018, author = {Raju, Rajarshi Roy and Liebig, Ferenc and Klemke, Bastian and Koetz, Joachim}, title = {pH-responsive magnetic Pickering Janus emulsions}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {296}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-018-4321-z}, pages = {1039 -- 1046}, year = {2018}, abstract = {We report ultrasonically generated pH-responsive Pickering Janus emulsions of olive oil and silicone oil with controllable droplet size and engulfment. Chitosan was used as a pH-responsive emulsifier. The increase of pH from 2 to 6 leads to a transition from completely engulfed double emulsion droplets to dumbbell-shaped Janus droplets accompanied by a significant decrease of droplet diameter and a more homogeneous size distribution. The results can be elucidated by the conformational change of chitosan from a more extended form at pH 2 to a more flexible form at pH 4-5. Magnetic responsiveness to the emulsion was attributed by dispersing superparamagnetic nanoparticles (Fe3O4 with diameter of 13 +/- 2 nm) in the olive oil phase before preparing the Janus emulsion. Incorporation of magnetic nanoparticles leads to superior emulsion stability, drastically reduced droplet diameters, and opened the way to control movement and orientation of the Janus droplets according to an external magnetic field.}, language = {en} } @article{RumschoettelKosmellaPrietzeletal.2017, author = {Rumschoettel, Jens and Kosmella, Sabine and Prietzel, Claudia Christina and Appelhans, Dietmar and Koetz, Joachim}, title = {DNA polyplexes with dendritic glycopolymer-entrapped gold nanoparticles}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {154}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2017.03.001}, pages = {74 -- 81}, year = {2017}, abstract = {Polyplexes, composed of Salmon DNA and very small gold nanoparticles embedded into a dendritic glycopolymer architecture of sugar-modified poly(ethyleneimine) (PEI-Mal) with a molar mass of about 25,000 g/mol, were characterized by dynamic light scattering (DLS), zeta potential measurements, micro differential scanning calorimetry (mu-DSC) and transmission electron microscopy (TEM). The PEI-Mal-entrapped gold nanoparticles of about 2 nm in diameter influence the polyplex formation of the hyperbranched PEI containing bulky maltose, and in consequence the DNA is more compactized in the inner part of spherical polyplex particles of about 150 nm in diameter. The resulting more compact core shell polyplex particles with embedded gold nanoparticles in the outer polymer shell will be used as components in forthcoming gene delivery experiments. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{WittSchaumloeffelSchwerdtle2020, author = {Witt, Barbara and Schauml{\"o}ffel, Dirk and Schwerdtle, Tanja}, title = {Subcellular Localization of Copper}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {7}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21072341}, pages = {25}, year = {2020}, abstract = {As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer's disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.}, language = {en} }