@phdthesis{Seiler2020, author = {Seiler, Michael}, title = {The Non-Keplerian Motion of Propeller Moons in the Saturnian Ring System}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2020}, abstract = {One of the tremendous discoveries by the Cassini spacecraft has been the detection of propeller structures in Saturn's A ring. Although the generating moonlet is too small to be resolved by the cameras aboard Cassini, its produced density structure within the rings, caused by its gravity can be well observed. The largest observed propeller is called Bl{\´e}riot and has an azimuthal extent over several thousand kilometers. Thanks to its large size, Bl{\´e}riot could be identified in different images over a time span of over 10 years, allowing the reconstruction of its orbital evolution. It turns out that Bl{\´e}riot deviates considerably from its expected Keplerian orbit in azimuthal direction by several thousand kilometers. This excess motion can be well reconstructed by a superposition of three harmonics, and therefore resembles the typical fingerprint of a resonantly perturbed body. This PhD thesis is directed to the excess motion of Bl{\´e}riot. Resonant perturbations are a known for some of the outer satellites of Saturn. Thus, in the first part of this thesis, we seek for suiting resonance candidates nearby the propeller, which might explain the observed periods and amplitudes. In numeric simulations, we show that indeed resonances by Prometheus, Pandora and Mimas can explain the libration periods in good agreement, but not the amplitudes. The amplitude problem is solved by the introduction of a propeller-moonlet interaction model, where we assume a broken symmetry of the propeller by a small displacement of the moonlet. This results in a librating motion the moonlet around the propeller's symmetry center due to the non-vanishing accelerations. The retardation of the reaction of the propeller structure to the motion of the moonlet causes the propeller to become asymmetric. Hydrodynamic simulations to test our analytical model confirm our predictions. In the second part of this thesis, we consider a stochastic migration of the moonlet, which is an alternative hypothesis to explain the observed excess motion of Bl{\´e}riot. The mean-longitude is a time-integrated quantity and thus introduces a correlation between the independent kicks of a random walk, smoothing the noise and thus makes the residual look similar to the observed one for Bl{\´e}riot. We apply a diagonalization test to decorrelated the observed residuals for the propellers Bl{\´e}riot and Earhart and the ring-moon Daphnis. It turns out that the decorrelated distributions do not strictly follow the expected Gaussian distribution. The decorrelation method fails to distinguish a correlated random walk from a noisy libration and thus we provide an alternative study. Assuming the three-harmonic fit to be a valid representation of the excess motion for Bl{\´e}riot, independently from its origin, we test the likelihood that this excess motion can be created by a random walk. It turns out that a non-correlated and correlated random walk is unlikely to explain the observed excess motion.}, language = {en} } @article{YeKurthHospodarskyetal.2018, author = {Ye, S. -Y. and Kurth, William S. and Hospodarsky, George B. and Persoon, Ann M. and Gurnett, Don A. and Morooka, Michiko and Wahlund, Jan-Erik and Hsu, Hsiang-Wen and Seiss, Martin and Srama, Ralf}, title = {Cassini RPWS dust observation near the Janus/Epimetheus orbit}, series = {Journal of geophysical research : Space physics}, volume = {123}, journal = {Journal of geophysical research : Space physics}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2017JA025112}, pages = {4952 -- 4960}, year = {2018}, abstract = {During the Ring Grazing orbits near the end of Cassini mission, the spacecraft crossed the equatorial plane near the orbit of Janus/Epimetheus (similar to 2.5 Rs). This region is populated with dust particles that can be detected by the Radio and Plasma Wave Science (RPWS) instrument via an electric field antenna signal. Analysis of the voltage waveforms recorded on the RPWS antennas provides estimations of the density and size distribution of the dust particles. Measured RPWS profiles, fitted with Lorentzian functions, are shown to be mostly consistent with the Cosmic Dust Analyzer, the dedicated dust instrument on board Cassini. The thickness of the dusty ring varies between 600 and 1,000 km. The peak location shifts north and south within 100 km of the ring plane, likely a function of the precession phase of Janus orbit.}, language = {en} }