@article{AriasAndresKluemperRojasJimenezetal.2018, author = {Arias-Andres, Maria and Kluemper, Uli and Rojas-Jimenez, Keilor and Grossart, Hans-Peter}, title = {Microplastic pollution increases gene exchange in aquatic ecosystems}, series = {Environmental pollution}, volume = {237}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2018.02.058}, pages = {253 -- 261}, year = {2018}, abstract = {Pollution by microplastics in aquatic ecosystems is accumulating at an unprecedented scale, emerging as a new surface for biofilm formation and gene exchange. In this study, we determined the permissiveness of aquatic bacteria towards a model antibiotic resistance plasmid, comparing communities that form biofilms on microplastics vs. those that are free-living. We used an exogenous and red-fluorescent E. coli donor strain to introduce the green-fluorescent broad-host-range plasmid pKJKS which encodes for trimethoprim resistance. We demonstrate an increased frequency of plasmid transfer in bacteria associated with microplastics compared to bacteria that are free-living or in natural aggregates. Moreover, comparison of communities grown on polycarbonate filters showed that increased gene exchange occurs in a broad range of phylogenetically-diverse bacteria. Our results indicate horizontal gene transfer in this habitat could distinctly affect the ecology of aquatic microbial communities on a global scale. The spread of antibiotic resistance through microplastics could also have profound consequences for the evolution of aquatic bacteria and poses a neglected hazard for human health.}, language = {en} } @article{SteppertSchoenfelderSchultzetal.2021, author = {Steppert, Isabel and Sch{\"o}nfelder, Jessy and Schultz, Carolyn and Kuhlmeier, Dirk}, title = {Rapid in vitro differentiation of bacteria by ion mobility spectrometry}, series = {Applied Microbiology and Biotechnology}, volume = {105}, journal = {Applied Microbiology and Biotechnology}, number = {10}, publisher = {Springer}, address = {New York}, issn = {0175-7598}, doi = {10.1007/s00253-021-11315-w}, pages = {4297 -- 4307}, year = {2021}, abstract = {Rapid screening of infected people plays a crucial role in interrupting infection chains. However, the current methods for identification of bacteria are very tedious and labor intense. Fast on-site screening for pathogens based on volatile organic compounds (VOCs) by ion mobility spectrometry (IMS) could help to differentiate between healthy and potentially infected subjects. As a first step towards this, the feasibility of differentiating between seven different bacteria including resistant strains was assessed using IMS coupled to multicapillary columns (MCC-IMS). The headspace above bacterial cultures was directly drawn and analyzed by MCC-IMS after 90 min of incubation. A cluster analysis software and statistical methods were applied to select discriminative VOC clusters. As a result, 63 VOC clusters were identified, enabling the differentiation between all investigated bacterial strains using canonical discriminant analysis. These 63 clusters were reduced to 7 discriminative VOC clusters by constructing a hierarchical classification tree. Using this tree, all bacteria including resistant strains could be classified with an AUC of 1.0 by receiver-operating characteristic analysis. In conclusion, MCC-IMS is able to differentiate the tested bacterial species, even the non-resistant and their corresponding resistant strains, based on VOC patterns after 90 min of cultivation. Although this result is very promising, in vivo studies need to be performed to investigate if this technology is able to also classify clinical samples. With a short analysis time of 5 min, MCC-IMS is quite attractive for a rapid screening for possible infections in various locations from hospitals to airports. Key Points center dot Differentiation of bacteria by MCC-IMS is shown after 90-min cultivation. center dot Non-resistant and resistant strains can be distinguished. center dot Classification of bacteria is possible based on metabolic features.}, language = {en} }