@article{RamiaramanantsoaRatnasingamShenaretal.2018, author = {Ramiaramanantsoa, Tahina and Ratnasingam, Rathish and Shenar, Tomer and Moffat, Anthony F. J. and Rogers, Tamara M. and Popowicz, Adam and Kuschnig, Rainer and Pigulski, Andrzej and Handler, Gerald and Wade, Gregg A. and Zwintz, Konstanze and Weiss, Werner W.}, title = {A BRITE view on the massive O-type supergiant V973 Scorpii}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1897}, pages = {972 -- 986}, year = {2018}, abstract = {Stochastically triggered photospheric light variations reaching similar to 40 mmag peak-to-valley amplitudes have been detected in the O8 Iaf supergiant V973 Scorpii as the outcome of 2 months of high-precision time-resolved photometric observations with the BRIght Target Explorer (BRITE) nanosatellites. The amplitude spectrum of the time series photometry exhibits a pronounced broad bump in the low-frequency regime (less than or similar to 0.9 d(-1)) where several prominent frequencies are detected. A time-frequency analysis of the observations reveals typical mode lifetimes of the order of 5-10 d. The overall features of the observed brightness amplitude spectrum of V973 Sco match well with those extrapolated from two-dimensional hydrodynamical simulations of convectively driven internal gravity waves randomly excited from deep in the convective cores of massive stars. An alternative or additional possible source of excitation from a sub-surface convection zone needs to be explored in future theoretical investigations.}, language = {en} } @article{LetoTrigilioOskinovaetal.2018, author = {Leto, Paolo and Trigilio, C. and Oskinova, Lida and Ignace, R. and Buemi, C. S. and Umana, G. and Ingallinera, A. and Leone, Francesco and Phillips, N. M. and Agliozzo, Claudia and Todt, Helge Tobias and Cerrigone, L.}, title = {A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907}, series = {Monthly notices of the Royal Astronomical Society}, volume = {476}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty244}, pages = {562 -- 579}, year = {2018}, abstract = {We present new radio/millimeter measurements of the hot magnetic star HR5907 obtained with the VLA and ALMA interferometers. We find that HR5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR5907.}, language = {en} } @misc{RisbeyLewandowskyCowtanetal.2018, author = {Risbey, James S. and Lewandowsky, Stephan and Cowtan, Kevin and Oreskes, Naomi and Rahmstorf, Stefan and Jokim{\"a}ki, Ari and Foster, Grant}, title = {A fluctuation in surface temperature in historical context}, series = {Environmental research letters}, volume = {13}, journal = {Environmental research letters}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/aaf342}, pages = {23}, year = {2018}, abstract = {This work reviews the literature on an alleged global warming 'pause' in global mean surface temperature (GMST) to determine how it has been defined, what time intervals are used to characterise it, what data are used to measure it, and what methods used to assess it. We test for 'pauses', both in the normally understood meaning of the term to mean no warming trend, as well as for a 'pause' defined as a substantially slower trend in GMST. The tests are carried out with the historical versions of GMST that existed for each pause-interval tested, and with current versions of each of the GMST datasets. The tests are conducted following the common (but questionable) practice of breaking the linear fit at the start of the trend interval ('broken' trends), and also with trends that are continuous with the data bordering the trend interval. We also compare results when appropriate allowance is made for the selection bias problem. The results show that there is little or no statistical evidence for a lack of trend or slower trend in GMST using either the historical data or the current data. The perception that there was a 'pause' in GMST was bolstered by earlier biases in the data in combination with incomplete statistical testing.}, language = {en} } @article{FusilloTremblayGaensickeetal.2018, author = {Fusillo, Nicola Pietro Gentile and Tremblay, Pier-Emmanuel and G{\"a}nsicke, Boris T. and Manser, Christopher J. and Cunningham, Tim and Cukanovaite, Elena and Hollands, Mark and Marsh, Thomas and Raddi, Roberto and Jordan, Stefan and Toonen, Silvia and Geier, Stephan and Barstow, Martin and Cummings, Jeffrey D.}, title = {A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS}, series = {Monthly notices of the Royal Astronomical Society}, volume = {482}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty3016}, pages = {4570 -- 4591}, year = {2018}, abstract = {We present a catalogue of white dwarf candidates selected from the second data release of Gaia (DR2). We used a sample of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey (SDSS) to map the entire space spanned by these objects in the Gaia Hertzsprung-Russell diagram. We then defined a set of cuts in absolute magnitude, colour, and a number of Gaia quality flags to remove the majority of contaminating objects. Finally, we adopt a method analogous to the one presented in our earlier SDSS photometric catalogues to calculate a probability of being a white dwarf (PWD) for all Gaia sources that passed the initial selection. The final catalogue is composed of 486641 stars with calculated PWD from which it is possible to select a sample of ≃260000 high-confidence white dwarf candidates in the magnitude range 8 < G < 21. By comparing this catalogue with a sample of SDSS white dwarf candidates, we estimate an upper limit in completeness of 85 per cent for white dwarfs with G ≤ 20 mag and Teff >7000 K, at high Galactic latitudes (|b| > 20°). However, the completeness drops at low Galactic latitudes, and the magnitude limit of the catalogue varies significantly across the sky as a function of Gaia's scanning law. We also provide the list of objects within our sample with available SDSS spectroscopy. We use this spectroscopic sample to characterize the observed structure of the white dwarf distribution in the H-R diagram.}, language = {en} } @article{GonzalezGalanOskinovaPopovetal.2018, author = {Gonz{\´a}lez-Gal{\´a}n, Ana and Oskinova, Lida and Popov, Sergei B. and Haberl, F. and K{\"u}hnel, M. and Gallagher, John S. and Schurch, Matthew and Guerrero, Mart{\´i}n A.}, title = {A multiwavelength study of SXP 1062, the long-period X-ray pulsar associated with a supernova remnant}, series = {Monthly notices of the Royal Astronomical Society}, volume = {475}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx3127}, pages = {2809 -- 2821}, year = {2018}, abstract = {SXP 1062 is a Be X-ray binary (BeXB) located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127-7332. In this work we present a multiwavelength view on SXP 1062 in different luminosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (Swift telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in BeXBs at periastron passage of the neutron star (NS). To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM-Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multiwavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the NS is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time.}, language = {en} } @article{LiebigHenningSarhanetal.2018, author = {Liebig, Ferenc and Henning, Ricky and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Bargheer, Matias and Koetz, Joachim}, title = {A new route to gold nanoflowers}, series = {Nanotechnology}, volume = {29}, journal = {Nanotechnology}, number = {18}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0957-4484}, doi = {10.1088/1361-6528/aaaffd}, pages = {8}, year = {2018}, abstract = {Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl)sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 . 10(5) for the nanoflowers deposited on a silicon wafer.}, language = {en} } @article{Sachse2018, author = {Sachse, Manuel}, title = {A planetary dust ring generated by impact-ejection from the Galilean satellites}, series = {Icarus : international journal of solar system studies}, volume = {303}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2017.10.011}, pages = {166 -- 180}, year = {2018}, abstract = {All outer planets in the Solar System are surrounded by a ring system. Many of these rings are dust rings or they contain at least a high proportion of dust. They are often formed by impacts of micro-meteoroids onto embedded bodies. The ejected material typically consists of micron-sized charged particles, which are susceptible to gravitational and non-gravitational forces. Generally, detailed information on the dynamics and distribution of the dust requires expensive numerical simulations of a large number of particles. Here we develop a relatively simple and fast, semi-analytical model for an impact-generated planetary dust ring governed by the planet's gravity and the relevant perturbation forces for the dynamics of small charged particles. The most important parameter of the model is the dust production rate, which is a linear factor in the calculation of the dust densities. We apply our model to dust ejected from the Galilean satellites using production rates obtained from flybys of the dust sources. The dust densities predicted by our model are in good agreement with numerical simulations and with in situ measurements by the Galileo spacecraft. The lifetimes of large particles are about two orders of magnitude greater than those of small ones, which implies a flattening of the size distribution in circumplanetary space. Information about the distribution of circumplanetary dust is also important for the risk assessment of spacecraft orbits in the respective regions.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2018, author = {Abdalla, Hassan E. and Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Akhperjanian, A. G. and Andersson, T. and Anguener, E. O. and Arakawa, M. and Arrieta, M. and Aubert, P. and Backes, M. and Balzer, A. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Blackwell, R. and Boettcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Capasso, M. and Carr, J. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Coffaro, M. and Colafrancesco, S. and Cologna, G. and Condon, B. and Conrad, J. and Cui, Y. and Davids, I. D. and Decock, J. and Degrange, B. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dutson, K. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitche, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Richter, S. and Rieger, F. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Saito, S. and Salek, D. and Sanchez, D. A. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Settimo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stycz, K. and Sushch, I. and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Wale, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywucka, N. and Bamba, A. and Fukui, Y. and Sano, H. and Yoshiike, S.}, title = {A search for new supernova remnant shells in the Galactic plane with HESS}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {612}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {H E S S Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730737}, pages = {23}, year = {2018}, abstract = {A search for new supernova remnants (SNRs) has been conducted using TeV gamma-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912 + 101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2018, author = {Abdalla, Hassan E. and Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Akhperjanian, A. G. and Anguenee, E. O. and Arrieta, M. and Aubert, P. and Backes, M. and Balzer, A. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Birsin, E. and Blackwell, R. and Boettcher, M. and Boisson, C. and Bolmont, J. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Bulik, T. and Capasso, M. and Carr, J. and Casanova, Sabrina and Chadwick, P. M. and Chakraborty, N. and Chalme-Calvet, R. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Chretien, M. and Colafrancesco, S. and Cologna, G. and Condon, B. and Conrad, J. and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goya, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, D. and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, A. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kerszberg, D. and Khelifi, B. and Kieffer, M. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lypova, I. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poona, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, D. and Sanchez, D. A. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, I. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Tuffs, R. and van der Walt, J. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venters, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywucka, N.}, title = {A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous HESS and RXTE observations}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {612}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {H E S S Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527773}, pages = {22}, year = {2018}, abstract = {Context. Microquasars are potential gamma-ray emitters. Indications of transient episodes of gamma-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional gamma-ray-emitting microquasars is required to better understand how gamma-ray emission can be produced in these systems. Aims. Theoretical models have predicted very high-energy (VHE) gamma-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the gamma-ray and X-ray bands. Methods. Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE gamma-ray upper limits from contemporaneous H.E.S.S. observations were derived. Results. No significant gamma-ray signal has been detected in any of the three systems. The integral gamma-ray photon flux at the observational epochs is constrained to be I(>560 GeV) < 7.3 x 10(-13) cm(-2) S-1, I(>560 GeV) < 1.2 x 10-(12) cm s(-1), and I(>240 GeV) < 4.5 x 10(-12) cm(-2) s(-1) for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively. Conclusions. The gamma-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping gamma-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE gamma-ray emission from microquasars is commonplace, then it is likely to be highly transient.}, language = {en} } @article{ArminChenJinetal.2018, author = {Armin, Ardalan and Chen, Zhiming and Jin, Yaocheng and Zhang, Kai and Huang, Fei and Shoaee, Safa}, title = {A Shockley-Type polymer}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201701450}, pages = {9}, year = {2018}, abstract = {Charge extraction rate in solar cells made of blends of electron donating/accepting organic semiconductors is typically slow due to their low charge carrier mobility. This sets a limit on the active layer thickness and has hindered the industrialization of organic solar cells (OSCs). Herein, charge transport and recombination properties of an efficient polymer (NT812):fullerene blend are investigated. This system delivers power conversion efficiency of >9\% even when the junction thickness is as large as 800 nm. Experimental results indicate that this material system exhibits exceptionally low bimolecular recombination constant, 800 times smaller than the diffusion-controlled electron and hole encounter rate. Comparing theoretical results based on a recently introduced modified Shockley model for fill factor, and experiments, clarifies that charge collection is nearly ideal in these solar cells even when the thickness is several hundreds of nanometer. This is the first realization of high-efficiency Shockley-type organic solar cells with junction thicknesses suitable for scaling up.}, language = {en} }