@article{PalyulinMetzler2014, author = {Palyulin, Vladimir V. and Metzler, Ralf}, title = {Speeding up the first-passage for subdiffusion by introducing a finite potential barrier}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {47}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/47/3/032002}, pages = {13}, year = {2014}, abstract = {We show that for a subdiffusive continuous time random walk with scale-free waiting time distribution the first-passage dynamics on a finite interval can be optimized by introduction of a piecewise linear potential barrier. Analytical results for the survival probability and first-passage density based on the fractional Fokker-Planck equation are shown to agree well with Monte Carlo simulations results. As an application we discuss an improved design for efficient translocation of gradient copolymers compared to homopolymer translocation in a quasi-equilibrium approximation.}, language = {en} } @article{GodecBauerMetzler2014, author = {Godec, Aljaz and Bauer, Maximilian and Metzler, Ralf}, title = {Collective dynamics effect transient subdiffusion of inert tracers in flexible gel networks}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/9/092002}, pages = {13}, year = {2014}, abstract = {Based on extensive Brownian dynamics simulations we study the thermal motion of a tracer bead in a cross-linked, flexible gel in the limit when the tracer particle size is comparable to or even larger than the equilibrium mesh size of the gel. The analysis of long individual trajectories of the tracer demonstrates the existence of pronounced transient anomalous diffusion. From the time averaged mean squared displacement and the time averaged van Hove correlation functions we elucidate the many-body origin of the non-Brownian tracer bead dynamics. Our results shed new light onto the ongoing debate over the physical origin of steric tracer interactions with structured environments.}, language = {en} } @article{CherstvyChechkinMetzler2014, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Ageing and confinement in non-ergodic heterogeneous diffusion processes}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {47}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {48}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/47/48/485002}, pages = {18}, year = {2014}, abstract = {We study the effects of ageing-the time delay between initiation of the physical process at t = 0 and start of observation at some time t(a) > 0-and spatial confinement on the properties of heterogeneous diffusion processes (HDPs) with deterministic power-law space-dependent diffusivities, D(x) = D-0 vertical bar x vertical bar(alpha). From analysis of the ensemble and time averaged mean squared displacements and the ergodicity breaking parameter quantifying the inherent degree of irreproducibility of individual realizations of the HDP we obtain striking similarities to ageing subdiffusive continuous time random walks with scale-free waiting time distributions. We also explore how both processes can be distinguished. For confined HDPs we study the long-time saturation of the ensemble and time averaged particle displacements as well as the magnitude of the inherent scatter of time averaged displacements and contrast the outcomes to the results known for other anomalous diffusion processes under confinement.}, language = {en} } @article{GodecChechkinBarkaietal.2014, author = {Godec, Aljaz and Chechkin, Aleksei V. and Barkai, Eli and Kantz, Holger and Metzler, Ralf}, title = {Localisation and universal fluctuations in ultraslow diffusion processes}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {47}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {49}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/47/49/492002}, pages = {10}, year = {2014}, abstract = {We study ultraslow diffusion processes with logarithmic mean squared displacement (MSD) < x(2)(t)> similar or equal to log(gamma)t. Comparison of annealed (renewal) continuous time random walks (CTRWs) with logarithmic waiting time distribution psi(tau) similar or equal to 1/(tau log(1+gamma)tau) and Sinai diffusion in quenched random landscapes reveals striking similarities, despite the great differences in their physical nature. In particular, they exhibit a weakly non-ergodic disparity of the time-averaged and ensemble-averaged MSDs. Remarkably, for the CTRW we observe that the fluctuations of time averages become universal, with an exponential suppression of mobile trajectories. We discuss the fundamental connection between the Golosov localization effect and non-ergodicity in the sense of the disparity between ensemble-averaged MSD and time-averaged MSD.}, language = {en} } @article{GhoshCherstvyMetzler2014, author = {Ghosh, Surya K. and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Non-universal tracer diffusion in crowded media of non-inert obstacles}, series = {Physical Chemistry Chemical Physics}, volume = {3}, journal = {Physical Chemistry Chemical Physics}, number = {17}, editor = {Metzler, Ralf}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, pages = {1847 -- 1858}, year = {2014}, abstract = {We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.}, language = {en} } @article{ShinCherstvyMetzler2014, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size}, series = {Soft Matter}, journal = {Soft Matter}, editor = {Metzler, Ralf}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, pages = {472 -- 488}, year = {2014}, abstract = {The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.}, language = {en} } @article{PalyulinAlaNissilaMetzler2014, author = {Palyulin, Vladimir V. and Ala-Nissila, Tapio and Metzler, Ralf}, title = {Polymer translocation: the first two decades and the recent diversification}, series = {Soft matter}, volume = {45}, journal = {Soft matter}, number = {10}, editor = {Metzler, Ralf}, publisher = {the Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76266}, pages = {9016 -- 9037}, year = {2014}, abstract = {Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous-infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis.}, language = {en} } @article{BauerGodecMetzler2014, author = {Bauer, Maximilian and Godec, Aljaž and Metzler, Ralf}, title = {Diffusion of finite-size particles in two-dimensional channels with random wall configurations}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {16}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {13}, publisher = {RSC Publications}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C3CP55160A}, pages = {6118 -- 6128}, year = {2014}, abstract = {Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick-Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107].}, language = {en} } @article{CherstvyChechkinMetzler2014, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity}, series = {Soft matter}, volume = {2014}, journal = {Soft matter}, number = {10}, publisher = {Royal Society of Chemistry}, issn = {2046-2069}, doi = {10.1039/c3sm52846d}, pages = {1591 -- 1601}, year = {2014}, abstract = {We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells.}, language = {en} }