@article{HauserCazzamaliWilliamsonetal.2006, author = {Hauser, Frank and Cazzamali, Giuseppe and Williamson, Michael and Blenau, Wolfgang and Grimmelikhuijzen, CJ.}, title = {A review of neurohormone GPCRs present in the fruitfly "Drosophila melanogaster" and the honey bee "Apis mellifera"}, issn = {0301-0082}, doi = {10.1016/j.pneurobio.2006.07.005}, year = {2006}, abstract = {G protein-coupled receptor (GPCR) genes are large gene families in every animal, sometimes making up to 1-2\% of the animal's genome. Of all insect GPCRs, the neurohormone (neuropeptide, protein hormone, biogenic amine) GPCRs are especially important, because they, together with their ligands, occupy a high hierarchic position in the physiology of insects and steer crucial processes such as development, reproduction, and behavior. In this paper, we give a review of our current knowledge on Drosophila melanogaster GPCRs and use this information to annotate the neurohormone GPCR genes present in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21 in Drosophila). The larger numbers of neurohormone receptors in Drosophila are probably due to gene duplications that occurred during recent evolution of the fly. Our analyses also yielded the likely ligands for 40 of the 56 honey bee neurohormone GPCRs identified in this study. In addition, we made some interesting observations on neurohormone GPCR evolution and the evolution and co-evolution of their ligands. For neuropeptide and protein hormone GPCRs, there appears to be a general co-evolution between receptors and their ligands. This is in contrast to biogenic amine GPCRs, where evolutionarily unrelated GPCRs often bind to the same biogenic amine, suggesting frequent ligand exchanges ("ligand hops") during GPCR evolution.}, language = {en} } @article{WalzBaumannKrachetal.2006, author = {Walz, Bernd and Baumann, Otto and Krach, Christian and Baumann, Arnd and Blenau, Wolfgang}, title = {The aminergic control of cockroach salivary glands}, year = {2006}, abstract = {The acinar salivary glands of cockroaches receive a dual innervation from the subesophageal ganglion and the stomatogastric nervous system. Acinar cells are surrounded by a plexus of dopaminergic and serotonergic varicose fibers. In addition, seroton-ergic terminals lie deep in the extracellulor spaces between acinar cells. Excitation-secretion coupling in cockroach salivary glands is stimulated by both dopamine and serotonin. These monoamines cause increases in the intracellular concentrations of cAMP and Ca2+. Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, two elementary secretary processes, namely electrolyte/water secretion and protein secretion, are triggered by different aminergic transmitters. Because of its simplicity and experimental accessibility, cockroach salivary glands have been used extensively as a model system to study the cellular actions of biogenic amines and to examine the pharmacological properties of biogenic amine receptors. In this review, we summarize current knowledge concerning the aminergic control of cockroach salivary glands and discuss our efforts to characterize Periplaneta biogenic amine receptors molecularly}, language = {en} }