@article{BroekerRoskeVallerianietal.2019, author = {Broeker, Nina K. and Roske, Yvette and Valleriani, Angelo and Stephan, Mareike Sophia and Andres, Dorothee and Koetz, Joachim and Heinemann, Udo and Barbirz, Stefanie}, title = {Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail}, series = {The journal of biological chemistry}, volume = {294}, journal = {The journal of biological chemistry}, number = {31}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {1083-351X}, doi = {10.1074/jbc.RA119.008133}, pages = {11751 -- 11761}, year = {2019}, abstract = {Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 angstrom resolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an E15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches.}, language = {en} } @article{BroekerKieleCasjensetal.2018, author = {Broeker, Nina K. and Kiele, Franziska and Casjens, Sherwood R. and Gilcrease, Eddie B. and Thalhammer, Anja and Koetz, Joachim}, title = {In Vitro Studies of Lipopolysaccharide-Mediated DNA Release of Podovirus HK620}, series = {Viruses}, volume = {10}, journal = {Viruses}, number = {6}, publisher = {Molecular Diversity Preservation International (MDPI)}, address = {Basel}, issn = {1999-4915}, doi = {10.3390/v10060289}, pages = {1 -- 15}, year = {2018}, abstract = {Gram-negative bacteria protect themselves with an outermost layer containing lipopolysaccharide (LPS). O-antigen-specific bacteriophages use tailspike proteins (TSP) to recognize and cleave the O-polysaccharide part of LPS. However, O-antigen composition and structure can be highly variable depending on the environmental conditions. It is important to understand how these changes may influence the early steps of the bacteriophage infection cycle because they can be linked to changes in host range or the occurrence of phage resistance. In this work, we have analyzed how LPS preparations in vitro trigger particle opening and DNA ejection from the E. coli podovirus HK620. Fluorescence-based monitoring of DNA release showed that HK620 phage particles in vitro ejected their genome at velocities comparable to those found for other podoviruses. Moreover, we found that HK620 irreversibly adsorbed to the LPS receptor via its TSP at restrictive low temperatures, without opening the particle but could eject its DNA at permissive temperatures. DNA ejection was solely stimulated by LPS, however, the composition of the O-antigen dictated whether the LPS receptor could start the DNA release from E. coli phage HK620 in vitro. This finding can be significant when optimizing bacteriophage mixtures for therapy, where in natural environments O-antigen structures may rapidly change.}, language = {en} } @article{BroekerGohlkeMuelleretal.2013, author = {Br{\"o}ker, Nina Kristin and Gohlke, Ulrich and M{\"u}ller, J{\"u}rgen J. and Uetrecht, Charlotte and Heinemann, Udo and Seckler, Robert and Barbirz, Stefanie}, title = {Single amino acid exchange in bacteriophage HK620 tailspike protein results in thousand-fold increase of its oligosaccharide affinity}, series = {Glycobiology}, volume = {23}, journal = {Glycobiology}, number = {1}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0959-6658}, doi = {10.1093/glycob/cws126}, pages = {59 -- 68}, year = {2013}, abstract = {Bacteriophage HK620 recognizes and cleaves the O-antigen polysaccharide of Escherichia coli serogroup O18A1 with its tailspike protein (TSP). HK620TSP binds hexasaccharide fragments with low affinity, but single amino acid exchanges generated a set of high-affinity mutants with submicromolar dissociation constants. Isothermal titration calorimetry showed that only small amounts of heat were released upon complex formation via a large number of direct and solvent-mediated hydrogen bonds between carbohydrate and protein. At room temperature, association was both enthalpy- and entropy-driven emphasizing major solvent rearrangements upon complex formation. Crystal structure analysis showed identical protein and sugar conformers in the TSP complexes regardless of their hexasaccharide affinity. Only in one case, a TSP mutant bound a different hexasaccharide conformer. The extended sugar binding site could be dissected in two regions: first, a hydrophobic pocket at the reducing end with minor affinity contributions. Access to this site could be blocked by a single aspartate to asparagine exchange without major loss in hexasaccharide affinity. Second, a region where the specific exchange of glutamate for glutamine created a site for an additional water molecule. Side-chain rearrangements upon sugar binding led to desolvation and additional hydrogen bonding which define this region of the binding site as the high-affinity scaffold.}, language = {en} } @article{AndresGohlkeBroekeretal.2013, author = {Andres, Dorothee and Gohlke, Ulrich and Br{\"o}ker, Nina Kristin and Schulze, Stefan and Rabsch, Wolfgang and Heinemann, Udo and Barbirz, Stefanie and Seckler, Robert}, title = {An essential serotype recognition pocket on phage P22 tailspike protein forces Salmonella enterica serovar Paratyphi A O-antigen fragments to bind as nonsolution conformers}, series = {Glycobiology}, volume = {23}, journal = {Glycobiology}, number = {4}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0959-6658}, doi = {10.1093/glycob/cws224}, pages = {486 -- 494}, year = {2013}, abstract = {Bacteriophage P22 recognizes O-antigen polysaccharides of Salmonella enterica subsp. enterica (S.) with its tailspike protein (TSP). In the serovars S. Typhimurium, S. Enteritidis, and S. Paratyphi A, the tetrasaccharide repeat units of the respective O-antigens consist of an identical main chain trisaccharide but different 3,6-dideoxyhexose substituents. Here, the epimers abequose, tyvelose and paratose determine the specific serotype. P22 TSP recognizes O-antigen octasaccharides in an extended binding site with a single 3,6-dideoxyhexose binding pocket. We have isolated S. Paratyphi A octasaccharides which were not available previously and determined the crystal structure of their complex with P22 TSP. We discuss our data together with crystal structures of complexes with S. Typhimurium and S. Enteritidis octasaccharides determined earlier. Isothermal titration calorimetry showed that S. Paratyphi A octasaccharide binds P22 TSP less tightly, with a difference in binding free energy of similar to 7 kJ mol(-1) at 20 degrees C compared with S. Typhimurium and S. Enteritidis octasaccharides. Individual protein-carbohydrate contacts were probed by amino acid replacements showing that the dideoxyhexose pocket contributes to binding of all three serotypes. However, S. Paratyphi A octasaccharides bind in a conformation with an energetically unfavorable phi/epsilon glycosidic bond angle combination. In contrast, octasaccharides from the other serotypes bind as solution-like conformers. Two water molecules are conserved in all P22 TSP complexes with octasaccharides of different serotypes. They line the dideoxyhexose binding pocket and force the S. Paratyphi A octasaccharides to bind as nonsolution conformers. This emphasizes the role of solvent as part of carbohydrate binding sites.}, language = {en} }