@article{BauerVosKlauschiesetal.2014, author = {Bauer, Barbara and Vos, Matthijs and Klauschies, Toni and Gaedke, Ursula}, title = {Diversity, functional similarity, and top-down control drive synchronization and the reliability of ecosystem function}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {183}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {3}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/674906}, pages = {394 -- 409}, year = {2014}, abstract = {The concept that diversity promotes reliability of ecosystem function depends on the pattern that community-level biomass shows lower temporal variability than species-level biomasses. However, this pattern is not universal, as it relies on compensatory or independent species dynamics. When in contrast within--trophic level synchronization occurs, variability of community biomass will approach population-level variability. Current knowledge fails to integrate how species richness, functional distance between species, and the relative importance of predation and competition combine to drive synchronization at different trophic levels. Here we clarify these mechanisms. Intense competition promotes compensatory dynamics in prey, but predators may at the same time increasingly synchronize, under increasing species richness and functional similarity. In contrast, predators and prey both show perfect synchronization under strong top-down control, which is promoted by a combination of low functional distance and high net growth potential of predators. Under such conditions, community-level biomass variability peaks, with major negative consequences for reliability of ecosystem function.}, language = {en} } @article{RochaGaedkeVasseur2011, author = {Rocha, Marcia R. and Gaedke, Ursula and Vasseur, David A.}, title = {Functionally similar species have similar dynamics}, series = {The journal of ecology}, volume = {99}, journal = {The journal of ecology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/j.1365-2745.2011.01893.x}, pages = {1453 -- 1459}, year = {2011}, abstract = {1. Improving the mechanistic basis of biodiversity-ecosystem function relationships requires a better understanding of how functional traits drive the dynamics of populations. For example, environmental disturbances or grazing may increase synchronization of functionally similar species, whereas functionally different species may show independent dynamics, because of different responses to the environment. Competition for resources, on the other hand, may yield a wide range of dynamic patterns among competitors and lead functionally similar and different species to display synchronized to compensatory dynamics. The mixed effect of these forces will influence the temporal fluctuations of populations and, thus, the variability of aggregate community properties. 2. To search for a relationship between functional and dynamics similarity, we studied the relationship between functional trait similarity and temporal dynamics similarity for 36 morphotypes of phytoplankton using long-term high-frequency measurements. 3. Our results show that functionally similar morphotypes exhibit dynamics that are more synchronized than those of functionally dissimilar ones. Functionally dissimilar morphotypes predominantly display independent temporal dynamics. This pattern is especially strong when short time-scales are considered. 4. Negative correlations are present among both functionally similar and dissimilar phytoplankton morphotypes, but are rarer and weaker than positive ones over all temporal scales. 5. Synthesis. We demonstrate that diversity in functional traits decreases community variability and ecosystem-level properties by decoupling the dynamics of individual morphotypes.}, language = {en} }