@article{SobelChenSchoenbohmetal.2013, author = {Sobel, Edward and Chen, Jie and Schoenbohm, Lindsay M. and Thiede, Rasmus Christoph and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen}, series = {Earth \& planetary science letters}, volume = {363}, journal = {Earth \& planetary science letters}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.12.009}, pages = {204 -- 218}, year = {2013}, abstract = {The northern part of the Pamir orogen is the preeminent example of an active intracontinental subduction zone in the early stages of continent-continent collision. Such zones are the least understood type of plate boundaries because modern examples are few and of limited access, and ancient analogs have been extensively overprinted by subsequent tectonic and erosion processes. In the Pamir, it has been assumed that most of the plate convergence was accommodated by overthrusting along the plate-bounding Main Pamir Thrust (MPT), which forms the principal northern mountain and deformation front of the Pamir. However, the synopsis of our new and previously published thermochronologic data from this region shows that the hanging wall of the MPT experienced relatively minor amounts of late Cenozoic exhumation. The Pamir orogen as a whole is an integral part of the overriding plate in a subduction system, while the remnant basin to the north constitutes the downgoing plate, with the bulk of the convergence accommodated by underthrusting. Herein, we demonstrate that the observed deformation of the upper and lower plates within the Pamir-Alai convergence zone resembles highly arcuate oceanic subduction systems characterized by slab rollback, subduction erosion, subduction accretion, and marginal slab-tear faults. We suggest that the curvature of the North Pamir is genetically linked to the short width and rollback of the south-dipping Alai slab; northward motion (indentation) of the Pamir is accommodated by crustal processes related to this rollback. The onset of south-dipping subduction is tentatively linked to intense Pamir contraction following break-off of the north-dipping Indian slab beneath the Karakoram.}, language = {en} } @article{ThiedeEhlers2013, author = {Thiede, Rasmus Christoph and Ehlers, Todd}, title = {Large spatial and temporal variations in Himalayan denudation}, series = {Earth \& planetary science letters}, volume = {371}, journal = {Earth \& planetary science letters}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2013.03.004}, pages = {278 -- 293}, year = {2013}, abstract = {In the last decade growing interest has emerged in quantifying the spatial and temporal variations in mountain building. Until recently, insufficient data have been available to attempt such a task at the scale of large orogens such as the Himalaya. The Himalaya accommodates ongoing convergence between India and Eurasia and is a focal point for studying orogen evolution and hypothesized interactions between tectonics and climate. Here we integrate 1126 published bedrock mineral cooling ages with a transient 1D Monte-Carlo thermal-kinematic erosion model to quantify the denudation histories along similar to 2700 km of the Himalaya. The model free parameter is a temporally variable denudation rate from 50 Ma to present. Thermophysical material properties and boundary conditions were tuned to individual study areas. Monte-Carlo simulations were conducted to identify the range of denudation histories that can reproduce the observed cooling ages. Results indicate large temporal and spatial variations in denudation and these are resolvable across different tectonic units of the Himalaya. More specifically, across > 1000 km of the southern Greater Himalaya denudation rates were highest (similar to 1.5-3 mm/yr) between similar to 10 and 2 Ma and lower (0.5-2.6 mm/yr) over the last 2 My. These differences are best determined in the NW-Himalaya. In contrast to this, across the similar to 2500 km length of the northern Greater Himalaya denudation rates vary over length scales of similar to 300-1700 km. Slower denudation (<1 mm/yr) occurred between 10 and 4 Ma followed by a large increase (1.2-2.6 mm/yr) in the last similar to 4 Ma. We find that only the southern Greater Himalayan Sequence clearly supports a continuous co-evolution of tectonics, climate and denudation. Results from the higher elevation northern Greater Himalaya suggest either tectonic driven variations in denudation due to a ramp-flat geometry in the main decollement and/or recent glacially enhanced denudation.}, language = {en} } @article{ThiedeSobelChenetal.2013, author = {Thiede, Rasmus Christoph and Sobel, Edward and Chen, Jie and Schoenbohm, Lindsay M. and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Late Cenozoic extension and crustal doming in the India-Eurasia collision zone new thermochronologic constraints from the NE Chinese Pamir}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20050}, pages = {763 -- 779}, year = {2013}, abstract = {The northward motion of the Pamir indenter with respect to Eurasia has resulted in coeval thrusting, strike-slip faulting, and normal faulting. The eastern Pamir is currently deformed by east-west oriented extension, accompanied by uplift and exhumation of the Kongur Shan (7719m) and Muztagh Ata (7546m) gneiss domes. Both domes are an integral part of the footwall of the Kongur Shan extensional fault system (KES), a 250 km long, north-south oriented graben. Why active normal faulting within the Pamir is primarily localized along the KES and not distributed more widely throughout the orogen has remained unclear. In addition, relatively little is known about how deformation has evolved throughout the Cenozoic, despite refined estimates on present-day crustal deformation rates and microseismicity, which indicate where crustal deformation is presently being accommodated. To better constrain the spatiotemporal evolution of faulting along the KES, we present 39 new apatite fission track, zircon U-Th-Sm/He, and Ar-40/Ar-39 cooling ages from a series of footwall transects along the KES graben shoulder. Combining these data with present-day topographic relief, 1-D thermokinematic and exhumational modeling documents successive stages, rather than synchronous deformation and gneiss dome exhumation. While the exhumation of the Kongur Shan commenced during the late Miocene, extensional processes in the Muztagh Ata massif began earlier and have slowed down since the late Miocene. We present a new model of synorogenic extension suggesting that thermal and density effects associated with a lithospheric tear fault along the eastern margin of the subducting Alai slab localize extensional upper plate deformation along the KES and decouple crustal motion between the central/western Pamir and eastern Pamir/Tarim basin.}, language = {en} }