@article{PreglaLissonHernandezVasishthetal.2021, author = {Pregla, Dorothea and Liss{\´o}n Hern{\´a}ndez, Paula J. and Vasishth, Shravan and Burchert, Frank and Stadie, Nicole}, title = {Variability in sentence comprehension in aphasia in German}, series = {Brain \& language : a journal of the neurobiology of language}, volume = {222}, journal = {Brain \& language : a journal of the neurobiology of language}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0093-934X}, doi = {10.1016/j.bl.2021.105008}, pages = {20}, year = {2021}, abstract = {An important aspect of aphasia is the observation of behavioral variability between and within individual participants. Our study addresses variability in sentence comprehension in German, by testing 21 individuals with aphasia and a control group and involving (a) several constructions (declarative sentences, relative clauses and control structures with an overt pronoun or PRO), (b) three response tasks (object manipulation, sentence-picture matching with/without self-paced listening), and (c) two test phases (to investigate test-retest performance). With this systematic, large-scale study we gained insights into variability in sentence comprehension. We found that the size of syntactic effects varied both in aphasia and in control participants. Whereas variability in control participants led to systematic changes, variability in individuals with aphasia was unsystematic across test phases or response tasks. The persistent occurrence of canonicity and interference effects across response tasks and test phases, however, shows that the performance is systematically influenced by syntactic complexity.}, language = {en} } @article{KtenidouRoumeliotiAbrahamsonetal.2018, author = {Ktenidou, Olga-Joan and Roumelioti, Zafeiria and Abrahamson, Norman and Cotton, Fabrice Pierre and Pitilakis, Kyriazis and Hollender, Fabrice}, title = {Understanding single-station ground motion variability and uncertainty (sigma)}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {16}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {6}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-017-0098-6}, pages = {2311 -- 2336}, year = {2018}, abstract = {Accelerometric data from the well-studied valley EUROSEISTEST are used to investigate ground motion uncertainty and variability. We define a simple local ground motion prediction equation (GMPE) and investigate changes in standard deviation (σ) and its components, the between-event variability (τ) and within-event variability (φ). Improving seismological metadata significantly reduces τ (30-50\%), which in turn reduces the total σ. Improving site information reduces the systematic site-to-site variability, φ S2S (20-30\%), in turn reducing φ, and ultimately, σ. Our values of standard deviations are lower than global values from literature, and closer to path-specific than site-specific values. However, our data have insufficient azimuthal coverage for single-path analysis. Certain stations have higher ground-motion variability, possibly due to topography, basin edge or downgoing wave effects. Sensitivity checks show that 3 recordings per event is a sufficient data selection criterion, however, one of the dataset's advantages is the large number of recordings per station (9-90) that yields good site term estimates. We examine uncertainty components binning our data with magnitude from 0.01 to 2 s; at smaller magnitudes, τ decreases and φ SS increases, possibly due to κ and source-site trade-offs Finally, we investigate the alternative approach of computing φ SS using existing GMPEs instead of creating an ad hoc local GMPE. This is important where data are insufficient to create one, or when site-specific PSHA is performed. We show that global GMPEs may still capture φ SS , provided that: (1) the magnitude scaling errors are accommodated by the event terms; (2) there are no distance scaling errors (use of a regionally applicable model). Site terms (φ S2S ) computed by different global GMPEs (using different site-proxies) vary significantly, especially for hard-rock sites. This indicates that GMPEs may be poorly constrained where they are sometimes most needed, i.e., for hard rock.}, language = {en} } @article{SilveiraCarlsohnLangenetal.2016, author = {Silveira, Raul De Souza and Carlsohn, Anja and Langen, Georg and Mayer, Frank and Scharhag-Rosenberger, Friederike}, title = {Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry}, series = {Journal of the International Society of Sports Nutrition}, volume = {13}, journal = {Journal of the International Society of Sports Nutrition}, publisher = {BioMed Central}, address = {London}, issn = {1550-2783}, doi = {10.1186/s12970-016-0115-1}, pages = {7}, year = {2016}, abstract = {Background: Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fat(peak)) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fat(peak) as well as its actual velocity (VPFO) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of VPFO and Fat(peak) during treadmill ergometry running. Conclusion: In summary, relative and absolute reliability indicators for V-PFO and Fat(peak) were found to be excellent. The observed LoA may now serve as a basis for future training prescriptions, although fat oxidation rates at prolonged exercise bouts at this intensity still need to be investigated.}, language = {en} } @article{DelgadoVossBuergeretal.2018, author = {Delgado, Jos{\´e} Miguel Martins and Voss, Sebastian and B{\"u}rger, Gerd and Vormoor, Klaus Josef and Murawski, Aline and Rodrigues Pereira, Jos{\´e} Marcelo and Martins, Eduardo and Vasconcelos J{\´u}nior, Francisco and Francke, Till}, title = {Seasonal drought prediction for semiarid northeastern Brazil}, series = {Hydrology and Earth System Sciences}, volume = {22}, journal = {Hydrology and Earth System Sciences}, number = {9}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-22-5041-2018}, pages = {5041 -- 5056}, year = {2018}, abstract = {A set of seasonal drought forecast models was assessed and verified for the Jaguaribe River in semiarid northeastern Brazil. Meteorological seasonal forecasts were provided by the operational forecasting system used at FUNCEME (Cear{\´a}'s research foundation for meteorology)and by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three downscaling approaches (empirical quantile mapping, extended downscaling and weather pattern classification) were tested and combined with the models in hindcast mode for the period 1981 to 2014. The forecast issue time was January and the forecast period was January to June. Hydrological drought indices were obtained by fitting a multivariate linear regression to observations. In short, it was possible to obtain forecasts for (a) monthly precipitation,(b) meteorological drought indices, and (c) hydrological drought indices. The skill of the forecasting systems was evaluated with regard to root mean square error (RMSE), the Brier skill score (BSS) and the relative operating characteristic skill score (ROCSS). The tested forecasting products showed similar performance in the analyzed metrics. Forecasts of monthly precipitation had little or no skill considering RMSE and mostly no skill with BSS. A similar picture was seen when forecasting meteorological drought indices: low skill regarding RMSE and BSS and significant skill when discriminating hit rate and false alarm rate given by the ROCSS (forecasting drought events of, e.g., SPEI1 showed a ROCSS of around 0.5). Regarding the temporal variation of the forecast skill of the meteorological indices, it was greatest for April, when compared to the remaining months of the rainy season, while the skill of reservoir volume forecasts decreased with lead time. This work showed that a multi-model ensemble can forecast drought events of timescales relevant to water managers in northeastern Brazil with skill. But no or little skill could be found in the forecasts of monthly precipitation or drought indices of lower scales, like SPI1. Both this work and those here revisited showed that major steps forward are needed in forecasting the rainy season in northeastern Brazil.}, language = {en} } @article{MuellerMuellerBauretal.2013, author = {M{\"u}ller, Juliane and M{\"u}ller, Steffen and Baur, Heiner and Mayer, Frank}, title = {Intra-individual gait speed variability in healthy children aged 1-15 years}, series = {Gait \& posture}, volume = {38}, journal = {Gait \& posture}, number = {4}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2013.02.011}, pages = {631 -- 636}, year = {2013}, abstract = {Introduction: Gait speed is one of the most commonly and frequently used parameters to evaluate gait development. It is characterized by high variability when comparing different steps in children. The objective of this study was to determine intra-individual gait speed variability in children. Methods: Gait speed measurements (6-10 trials across a 3 m walkway) were performed and analyzed in 8263 children, aged 1-15 years. The coefficient of variation (CV) served as a measure for intra-individual gait speed variability measured in 6.6 +/- 1.0 trials per child. Multiple linear regression analysis was conducted to evaluate the influence of age and body height on changes in variability. Additionally, a subgroup analysis for height within the group of 6-year-old children was applied. Results: A successive reduction in gait speed variability (CV) was observed for age groups (age: 1-15 years) and body height groups (height: 0.70-1.90 m). The CV in the oldest subjects was only one third of the CV (CV 6.25 +/- 3.52\%) in the youngest subjects (CV 16.58 +/- 10.01\%). Up to the age of 8 years (or 1.40 m height) there was a significant reduction in CV over time, compared to a leveling off for the older (taller) children. Discussion: The straightforward approach measuring gait speed variability in repeated trials might serve as a fundamental indicator for gait development in children. Walking velocity seems to increase to age 8. Enhanced gait speed consistency of repeated trials develops up to age 15.}, language = {en} }