@article{Vogel2022, author = {Vogel, Johannes}, title = {Drivers of phenological changes in southern Europe}, series = {International Journal of Biometeorology}, volume = {66}, journal = {International Journal of Biometeorology}, number = {9}, publisher = {Springer}, address = {New York}, issn = {0020-7128}, doi = {10.1007/s00484-022-02331-0}, pages = {1903 -- 1914}, year = {2022}, abstract = {The life cycle of plants is largely determined by climate, which renders phenological responses to climate change a highly suitable bioindicator of climate change. Yet, it remains unclear, which are the key drivers of phenological patterns at certain life stages. Furthermore, the varying responses of species belonging to different plant functional types are not fully understood. In this study, the role of temperature and precipitation as environmental drivers of phenological changes in southern Europe is assessed. The trends of the phenophases leaf unfolding, flowering, fruiting, and senescence are quantified, and the corresponding main environmental drivers are identified. A clear trend towards an earlier onset of leaf unfolding, flowering, and fruiting is detected, while there is no clear pattern for senescence. In general, the advancement of leaf unfolding, flowering and fruiting is smaller for deciduous broadleaf trees in comparison to deciduous shrubs and crops. Many broadleaf trees are photoperiod-sensitive; therefore, their comparatively small phenological advancements are likely the effect of photoperiod counterbalancing the impact of increasing temperatures. While temperature is identified as the main driver of phenological changes, precipitation also plays a crucial role in determining the onset of leaf unfolding and flowering. Phenological phases advance under dry conditions, which can be linked to the lack of transpirational cooling leading to rising temperatures, which subsequently accelerate plant growth.}, language = {en} } @article{GuoLohmannRatzmannetal.2016, author = {Guo, Tong and Lohmann, Dirk and Ratzmann, Gregor and Tietjen, Britta}, title = {Response of semi-arid savanna vegetation composition towards grazing along a precipitation gradient-The effect of including plant heterogeneity into an ecohydrological savanna model}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {325}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2016.01.004}, pages = {47 -- 56}, year = {2016}, abstract = {Ecohydrological models of savanna rangeland systems typically aggregate plant species to very broad plant functional types (PFTs), which are characterized by their trait combinations. However, neglecting trait variability within modelled PFTs may hamper our ability to understand the effects of climate or land use change on vegetation composition and thus on ecosystem processes. In this study we extended and parameterized the ecohydrological savanna model EcoHyD, which originally considered only three broad PFTs (perennial grasses, annuals and shrubs). We defined several sub-types of perennial grasses (sub-PFTs) to assess the effect of environmental conditions on vegetation composition and ecosystem functioning. These perennial sub-PFTs are defined by altering distinct trait values based on a trade-off approach for (i) the longevity of plants and (ii) grazing-resistance. We find that increasing grazing intensity leads to a dominance of the fast-growing and short-lived perennial grass type as well as a dominance of the poorly palatable grass type. Increasing precipitation dampens the magnitude of grazing-induced shifts between perennial grass types. The diversification of perennial grass PFTs generally increases the total perennial grass cover and ecosystem water use efficiency, but does not protect the community from shrub encroachment. We thus demonstrate that including trait heterogeneity into ecosystem models will allow for an improved representation of ecosystem responses to environmental change in savannas. This will help to better assess how ecosystem functions might be impacted under future conditions. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{KoernerPfestorfMayetal.2014, author = {Koerner, Katrin and Pfestorf, Hans and May, Felix and Jeltsch, Florian}, title = {Modelling the effect of belowground herbivory on grassland diversity}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {273}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2013.10.025}, pages = {79 -- 85}, year = {2014}, abstract = {One challenging question in ecology is to explain species coexistence in highly diverse temperate grassland plant communities. Within this context, a clear understanding of the consequences of belowground herbivory for the composition and the diversity of plant communities continue to elude ecologists. The existing body of empirical evidence reveals partly contradictory responses ranging from negative to neutral or positive effects of belowground herbivory on grassland diversity. To reveal possible mechanistic grounds for these discrepancies, we extended an existing simulation model of grassland communities based on plant functional types to include root herbivory. This enabled us to test the effects of different feeding modes that represent different herbivore guilds. For each belowground feeding mode, we systematically varied the intensity and frequency of herbivory events for three different levels of soil fertility both in the presence and absence of additional aboveground grazing. Our modelling approach successfully reproduced various empirically reported diversity responses, merely on the basis of the different feeding modes. Different levels of plant resource availability affected the strength, but not the direction of the belowground herbivory effects. The only exception was the scenario with low resource levels, which promoted neutral (neither positive nor negative) diversity responses for some of the feeding modes. Interestingly, aboveground biomass production was largely unaffected by diversity changes induced by belowground herbivory except in the case of selective feeding modes that were related to specific functional traits. Our findings provide possible explanations for the broad spectrum of belowground herbivory effects on plant community diversity. Furthermore, the presented theoretical modelling approach provides a suitable conceptual framework to better understand the complex linkage between plant community and belowground herbivory dynamics.}, language = {en} } @article{NiCaoJeltschetal.2014, author = {Ni, Jian and Cao, Xianyong and Jeltsch, Florian and Herzschuh, Ulrike}, title = {Biome distribution over the last 22,000 yr in China}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {409}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2014.04.023}, pages = {33 -- 47}, year = {2014}, abstract = {Patterns of past vegetation changes over time and space can help facilitate better understanding of the interactions among climate, ecosystem, and human impact. Biome changes in China over the last 22,000 yr (calibrated radiocarbon date, a BP) were numerically reconstructed by using a standard approach of pollen-plant functional type-biome assignment (biomization). The biomization procedure involves pollen data from 2434 surface sites and 228 fossil sites with a high quality of pollen count and C-14 dating, 51 natural and three anthropogenic plant functional types (PFTs), as well as 19 natural and one anthropogenic biome. Surface pollen-based reconstruction of modern natural biome patterns is in good agreement (74.4\%) with actual vegetation distribution in China. However, modem large-scale anthropogenic biome reconstruction has not been successful based on the current setup of three anthropogenic PFTs (plantation, secondary, and disturbed PFT) because of the limitation of non-species level pollen identification and the difficulty in the clear assignment of disturbed PFTs. The non-anthropogenic biome distributions of 44 time slices at 500-year intervals show large-scale discrepant and changed vegetation patterns from the last glacial maximum (LGM) to the Holocene throughout China. From 22 ka BP to 19 ka BP, temperate grassland, xerophytic shrubland, and desert dominated northern China, whereas cold or cool forests flourished in central China. Warm-temperate evergreen forests were restricted to far southern China, and tropical forests were absent During 18.5 ka BP to 12 ka BP, cold, cool, and dry biomes extended to some parts of northern, westem, and eastern China. Warm-temperate evergreen and mixed forests gradually expanded to occupy the whole of southern China. A slight northward shift of forest biomes occurred from 15 ka BP to 12 lea BP. During 11.5 ka BP to 9 ka BP, temperate grassland and shrubland gradually stretched to northern and western China. Cold and cool forests widely expanded into northern and central China, as well as in the northern margin of South China along with temperate deciduous forest. Since the early mid-Holocene (approximately 8.5 ka BP to 5.5 ka BP), all forest biomes shifted northward at the expense of herbaceous and shrubby biomes. Simultaneously, cold and cool forest biomes occupied the marginal areas of the Tibetan Plateau and the high mountains in western China. During the middle to late Holocene, from 5 ka to the present, temperate grassland and xerophytic shrubland expanded to the south and east, whereas temperate deciduous forests slightly shifted southward. After 3 lea BP, forest biomes were absent in western China and on the Tibetan plateau surface. Dramatic biome shifts from the LGM to the Holocene were observed in the forest-grassland ecotone and transitional zones between temperate and subtropical climates, between subtropical and tropical regions, and in the mountainous margins of the eastern Tibetan Plateau. Evidence showed more human disturbances during the late Holocene. More pollen records and historical documents are therefore further needed to understand fully the human disturbance-induced large-scale forest changes. In addition, more classifications of anthropogenic biome or land cover, more distinct assignment of pollen taxa to anthropogenic PFTs, and more effective numerical and/or mechanistic techniques in building large-scale human disturbances are required. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{EstherGroeneveldEnrightetal.2011, author = {Esther, Alexandra and Groeneveld, J{\"u}rgen and Enright, Neal J. and Miller, Ben P. and Lamont, Byron B. and Perry, George L. W. and Tietjen, Britta and Jeltsch, Florian}, title = {Low-dimensional trade-offs fail to explain richness and structure in species-rich plant communities}, series = {Theoretical ecology}, volume = {4}, journal = {Theoretical ecology}, number = {4}, publisher = {Springer}, address = {Heidelberg}, issn = {1874-1738}, doi = {10.1007/s12080-010-0092-y}, pages = {495 -- 511}, year = {2011}, abstract = {Mathematical models and ecological theory suggest that low-dimensional life history trade-offs (i.e. negative correlation between two life history traits such as competition vs. colonisation) may potentially explain the maintenance of species diversity and community structure. In the absence of trade-offs, we would expect communities to be dominated by 'super-types' characterised by mainly positive trait expressions. However, it has proven difficult to find strong empirical evidence for such trade-offs in species-rich communities. We developed a spatially explicit, rule-based and individual-based stochastic model to explore the importance of low-dimensional trade-offs. This model simulates the community dynamics of 288 virtual plant functional types (PFTs), each of which is described by seven life history traits. We consider trait combinations that fit into the trade-off concept, as well as super-types with little or no energy constraints or resource limitations, and weak PFTs, which do not exploit resources efficiently. The model is parameterised using data from a fire-prone, species-rich Mediterranean-type shrubland in southwestern Australia. We performed an exclusion experiment, where we sequentially removed the strongest PFT in the simulation and studied the remaining communities. We analysed the impact of traits on performance of PFTs in the exclusion experiment with standard and boosted regression trees. Regression tree analysis of the simulation results showed that the trade-off concept is necessary for PFT viability in the case of weak trait expression combinations such as low seed production or small seeds. However, species richness and diversity can be high despite the presence of super-types. Furthermore, the exclusion of super-types does not necessarily lead to a large increase in PFT richness and diversity. We conclude that low-dimensional trade-offs do not provide explanations for multi-species co-existence contrary to the prediction of many conceptual models.}, language = {en} }