@article{BlankenburgBalfanzHayashietal.2015, author = {Blankenburg, Stefanie and Balfanz, Sabine and Hayashi, Y. and Shigenobu, S. and Miura, T. and Baumann, Otto and Baumann, Arnd and Blenau, Wolfgang}, title = {Cockroach GABA(B) receptor subtypes: Molecular characterization, pharmacological properties and tissue distribution}, series = {Neuropharmacology}, volume = {88}, journal = {Neuropharmacology}, publisher = {Elsevier}, address = {Oxford}, issn = {0028-3908}, doi = {10.1016/j.neuropharm.2014.08.022}, pages = {134 -- 144}, year = {2015}, abstract = {gamma-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABA(A) receptors or metabotropic GABA(B) receptors. GABA(B) receptors regulate, via Gi/o, G-proteins, ion channels, and adenylyl cyclases. In humans, GABA(B) receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABA(B) receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABA(B) receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABA(B) receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABA(B) receptors act as autoreceptors in this neuron.}, language = {en} } @misc{TroppmannBalfanzKrachetal.2014, author = {Troppmann, Britta and Balfanz, Sabine and Krach, Christian and Baumann, Arnd and Blenau, Wolfgang}, title = {Characterization of an Invertebrate-Type Dopamine Receptor of the American Cockroach, Periplaneta americana}, series = {International journal of molecular sciences}, volume = {15}, journal = {International journal of molecular sciences}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms15010629}, pages = {629 -- 653}, year = {2014}, abstract = {We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology.}, language = {en} } @misc{BlenauThamm2011, author = {Blenau, Wolfgang and Thamm, Markus}, title = {Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies lessons from Drosophila melanogaster and Apis mellifera}, series = {Arthropod structure \& development}, volume = {40}, journal = {Arthropod structure \& development}, number = {5}, publisher = {Elsevier}, address = {Oxford}, issn = {1467-8039}, doi = {10.1016/j.asd.2011.01.004}, pages = {381 -- 394}, year = {2011}, abstract = {The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) plays a key role in regulating and modulating various physiological and behavioral processes in both protostomes and deuterostomes. The specific functions of serotonin are mediated by its binding to and subsequent activation of membrane receptors. The vast majority of these receptors belong to the superfamily of G-protein-coupled receptors. We report here the in vivo expression pattern of a recently characterized 5-HT(1) receptor of the honeybee Apis mellifera (Am5-HT(1A)) in the mushroom bodies. In addition, we summarize current knowledge on the distribution of serotonin and serotonin receptor subtypes in the brain and specifically in the mushroom bodies of the fruit fly Drosophila melanogaster and the honeybee. Functional studies in these two species have shown that serotonergic signaling participates in various behaviors including aggression, sleep, circadian rhythms, responses to visual stimuli, and associative learning. The molecular, pharmacological, and functional properties of identified 5-HT receptor subtypes from A. mellifera and D. melanogaster will also be summarized in this review.}, language = {en} }