@article{FerTietjenJeltschetal.2017, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian and Trauth, Martin H.}, title = {Modelling vegetation change during Late Cenozoic uplift of the East African plateaus}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {467}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2016.04.007}, pages = {120 -- 130}, year = {2017}, abstract = {The present-day vegetation in the tropics is mainly characterized by forests worldwide except in tropical East Africa, where forests only occur as patches at the coast and in the uplands. These forest patches result from the peculiar aridity that is linked to the uplift of the region during the Late Cenozoic. The Late Cenozoic vegetation history of East Africa is of particular interest as it has set the scene for the contemporary events in mammal and hominin evolution. In this study, we investigate the conditions under which these forest patches could have been connected, and a previous continuous forest belt could have extended and fragmented. We apply a dynamic vegetation model with a set of climatic scenarios in which we systematically alter the present-day environmental conditions such that they would be more favourable for a continuous forest belt in tropical East Africa. We consider varying environmental factors, namely temperature, precipitation and atmospheric CO2 concentrations. Our results show that all of these variables play a significant role in supporting the forest biomes and a continuous forest belt could have occurred under certain combinations of these settings. With our current knowledge of the palaeoenvironmental history of East Africa, it is likely that the region hosted these conditions during the Late Cenozoic. Recent improvements on environmental hypotheses of hominin evolution highlight the role of periods of short and extreme climate variability during the Late Cenozoic specific to East Africa in driving evolution. Our results elucidate how the forest biomes of East Africa can appear and disappear under fluctuating environmental conditions and demonstrate how this climate variability might be recognized on the biosphere level.}, language = {en} } @misc{RomeroMujalliJeltschTiedemann2018, author = {Romero-Mujalli, Daniel and Jeltsch, Florian and Tiedemann, Ralph}, title = {Individual-based modeling of eco-evolutionary dynamics}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-018-1406-7}, pages = {1 -- 12}, year = {2018}, abstract = {A challenge for eco-evolutionary research is to better understand the effect of climate and landscape changes on species and their distribution. Populations of species can respond to changes in their environment through local genetic adaptation or plasticity, dispersal, or local extinction. The individual-based modeling (IBM) approach has been repeatedly applied to assess organismic responses to environmental changes. IBMs simulate emerging adaptive behaviors from the basic entities upon which both ecological and evolutionary mechanisms act. The objective of this review is to summarize the state of the art of eco-evolutionary IBMs and to explore to what degree they already address the key responses of organisms to environmental change. In this, we identify promising approaches and potential knowledge gaps in the implementation of eco-evolutionary mechanisms to motivate future research. Using mainly the ISI Web of Science, we reveal that most of the progress in eco-evolutionary IBMs in the last decades was achieved for genetic adaptation to novel local environmental conditions. There is, however, not a single eco-evolutionary IBM addressing the three potential adaptive responses simultaneously. Additionally, IBMs implementing adaptive phenotypic plasticity are rare. Most commonly, plasticity was implemented as random noise or reaction norms. Our review further identifies a current lack of models where plasticity is an evolving trait. Future eco-evolutionary models should consider dispersal and plasticity as evolving traits with their associated costs and benefits. Such an integrated approach could help to identify conditions promoting population persistence depending on the life history strategy of organisms and the environment they experience.}, language = {en} } @phdthesis{Autenrieth2020, author = {Autenrieth, Marijke}, title = {Population genomics of two odontocetes in the North Atlantic and adjacent waters}, school = {Universit{\"a}t Potsdam}, pages = {IX, 110}, year = {2020}, abstract = {Due to continuously intensifying human usage of the marine environment worldwide ranging cetaceans face an increasing number of threats. Besides whaling, overfishing and by-catch, new technical developments increase the water and noise pollution, which can negatively affect marine species. Cetaceans are especially prone to these influences, being at the top of the food chain and therefore accumulating toxins and contaminants. Furthermore, they are extremely noise sensitive due to their highly developed hearing sense and echolocation ability. As a result, several cetacean species were brought to extinction during the last century or are now classified as critically endangered. This work focuses on two odontocetes. It applies and compares different molecular methods for inference of population status and adaptation, with implications for conservation. The worldwide distributed sperm whale (Physeter macrocephalus) shows a matrilineal population structure with predominant male dispersal. A recently stranded group of male sperm whales provided a unique opportunity to investigate male grouping for the first time. Based on the mitochondrial control region, I was able to infer that male bachelor groups comprise multiple matrilines, hence derive from different social groups, and that they represent the genetic variability of the entire North Atlantic. The harbor porpoise (Phocoena phocoena) occurs only in the northern hemisphere. By being small and occurring mostly in coastal habitats it is especially prone to human disturbance. Since some subspecies and subpopulations are critically endangered, it is important to generate and provide genetic markers with high resolution to facilitate population assignment and subsequent protection measurements. Here, I provide the first harbour porpoise whole genome, in high quality and including a draft annotation. Using it for mapping ddRAD seq data, I identify genome wide SNPs and, together with a fragment of the mitochondrial control region, inferred the population structure of its North Atlantic distribution range. The Belt Sea harbors a distinct subpopulation oppose to the North Atlantic, with a transition zone in the Kattegat. Within the North Atlantic I could detect subtle genetic differentiation between western (Canada-Iceland) and eastern (North Sea) regions, with support for a German North Sea breading ground around the Isle of Sylt. Further, I was able to detect six outlier loci which show isolation by distance across the investigated sampling areas. In employing different markers, I could show that single maker systems as well as genome wide data can unravel new information about population affinities of odontocetes. Genome wide data can facilitate investigation of adaptations and evolutionary history of the species and its populations. Moreover, they facilitate population genetic investigations, providing a high resolution, and hence allowing for detection of subtle population structuring especially important for highly mobile cetaceans.}, language = {en} } @article{SmithDupontMcCarthyetal.2019, author = {Smith, Sarah R. and Dupont, Chris L. and McCarthy, James K. and Broddrick, Jared T. and Obornik, Miroslav and Horak, Ales and F{\"u}ssy, Zolt{\´a}n and Cihlar, Jaromir and Kleessen, Sabrina and Zheng, Hong and McCrow, John P. and Hixson, Kim K. and Araujo, Wagner L. and Nunes-Nesi, Adriano and Fernie, Alisdair R. and Nikoloski, Zoran and Palsson, Bernhard O. and Allen, Andrew E.}, title = {Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-12407-y}, pages = {14}, year = {2019}, abstract = {Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.}, language = {en} } @article{ParaskevopoulouDennisWeithoffetal.2020, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Tiedemann, Ralph}, title = {Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-70173-0}, pages = {15}, year = {2020}, abstract = {Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species' adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming.}, language = {en} } @article{HebigGiese2017, author = {Hebig, Regina and Giese, Holger}, title = {On the complex nature of MDE evolution and its impact on changeability}, series = {Software and systems modeling}, volume = {16}, journal = {Software and systems modeling}, publisher = {Springer}, address = {Heidelberg}, issn = {1619-1366}, doi = {10.1007/s10270-015-0464-2}, pages = {333 -- 356}, year = {2017}, language = {en} } @misc{SicardLenhard2011, author = {Sicard, Adrien and Lenhard, Michael}, title = {The selfing syndrome a model for studying the genetic and evolutionary basis of morphological adaptation in plants}, series = {Annals of botany}, volume = {107}, journal = {Annals of botany}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-7364}, doi = {10.1093/aob/mcr023}, pages = {1433 -- 1443}, year = {2011}, abstract = {Background In angiosperm evolution, autogamously selfing lineages have been derived from outbreeding ancestors multiple times, and this transition is regarded as one of the most common evolutionary tendencies in flowering plants. In most cases, it is accompanied by a characteristic set of morphological and functional changes to the flowers, together termed the selfing syndrome. Two major areas that have changed during evolution of the selfing syndrome are sex allocation to male vs. female function and flower morphology, in particular flower (mainly petal) size and the distance between anthers and stigma. Scope A rich body of theoretical, taxonomic, ecological and genetic studies have addressed the evolutionary modification of these two trait complexes during or after the transition to selfing. Here, we review our current knowledge about the genetics and evolution of the selfing syndrome. Conclusions We argue that because of its frequent parallel evolution, the selfing syndrome represents an ideal model for addressing basic questions about morphological evolution and adaptation in flowering plants, but that realizing this potential will require the molecular identification of more of the causal genes underlying relevant trait variation.}, language = {en} } @misc{SchippersNguyenLuetal.2012, author = {Schippers, Jos H. M. and Nguyen, Hung M. and Lu, Dandan and Schmidt, Romy and M{\"u}ller-R{\"o}ber, Bernd}, title = {ROS homeostasis during development: an evolutionary conserved strategy}, series = {Cellular and molecular life sciences}, volume = {69}, journal = {Cellular and molecular life sciences}, number = {19}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-012-1092-4}, pages = {3245 -- 3257}, year = {2012}, abstract = {The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator.}, language = {en} } @article{SteinertCassouHirschfeld2013, author = {Steinert, Bastian and Cassou, Damien and Hirschfeld, Robert}, title = {CoExist overcoming aversion to change preserving immediate access to source code and run-time information of previous development states}, series = {ACM SIGPLAN notices}, volume = {48}, journal = {ACM SIGPLAN notices}, number = {2}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0362-1340}, doi = {10.1145/2480360.2384591}, pages = {107 -- 117}, year = {2013}, abstract = {Programmers make many changes to the program to eventually find a good solution for a given task. In this course of change, every intermediate development state can of value, when, for example, a promising ideas suddenly turn out inappropriate or the interplay of objects turns out more complex than initially expected before making changes. Programmers would benefit from tool support that provides immediate access to source code and run-time of previous development states of interest. We present IDE extensions, implemented for Squeak/Smalltalk, to preserve, retrieve, and work with this information. With such tool support, programmers can work without worries because they can rely on tools that help them with whatever their explorations will reveal. They no longer have to follow certain best practices only to avoid undesired consequences of changing code.}, language = {en} } @article{HillLeowBleidornetal.2013, author = {Hill, Natascha and Leow, Alexander and Bleidorn, Christoph and Groth, Detlef and Tiedemann, Ralph and Selbig, Joachim and Hartmann, Stefanie}, title = {Analysis of phylogenetic signal in protostomial intron patterns using Mutual Information}, series = {Theory in biosciences}, volume = {132}, journal = {Theory in biosciences}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1431-7613}, doi = {10.1007/s12064-012-0173-0}, pages = {93 -- 104}, year = {2013}, abstract = {Many deep evolutionary divergences still remain unresolved, such as those among major taxa of the Lophotrochozoa. As alternative phylogenetic markers, the intron-exon structure of eukaryotic genomes and the patterns of absence and presence of spliceosomal introns appear to be promising. However, given the potential homoplasy of intron presence, the phylogenetic analysis of this data using standard evolutionary approaches has remained a challenge. Here, we used Mutual Information (MI) to estimate the phylogeny of Protostomia using gene structure data, and we compared these results with those obtained with Dollo Parsimony. Using full genome sequences from nine Metazoa, we identified 447 groups of orthologous sequences with 21,732 introns in 4,870 unique intron positions. We determined the shared absence and presence of introns in the corresponding sequence alignments and have made this data available in "IntronBase", a web-accessible and downloadable SQLite database. Our results obtained using Dollo Parsimony are obviously misled through systematic errors that arise from multiple intron loss events, but extensive filtering of data improved the quality of the estimated phylogenies. Mutual Information, in contrast, performs better with larger datasets, but at the same time it requires a complete data set, which is difficult to obtain for orthologs from a large number of taxa. Nevertheless, Mutual Information-based distances proved to be useful in analyzing this kind of data, also because the estimation of MI-based distances is independent of evolutionary models and therefore no pre-definitions of ancestral and derived character states are necessary.}, language = {en} }