@article{GrzesiukSpijkermanLachmannetal.2018, author = {Grzesiuk, Malgorzata and Spijkerman, Elly and Lachmann, Sabrina C. and Wacker, Alexander}, title = {Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions}, series = {Ecotoxicology and Environmental Safety}, volume = {156}, journal = {Ecotoxicology and Environmental Safety}, publisher = {Elsevier}, address = {San Diego}, issn = {0147-6513}, doi = {10.1016/j.ecoenv.2018.03.019}, pages = {271 -- 278}, year = {2018}, abstract = {Pharmaceuticals are found in freshwater ecosystems where even low concentrations in the range of ng L-1 may affect aquatic organisms. In the current study, we investigated the effects of chronic exposure to three pharmaceuticals on two microalgae, a potential modulation of the effects by additional inorganic phosphorus (Pi) limitation, and a potential propagation of the pharmaceuticals' effect across a trophic interaction. The latter considers that pharmaceuticals are bioaccumulated by algae, potentially metabolized into more (or less) toxic derivates and consequently consumed by zooplankton. We cultured Acutodesmus obliquus and Nannochloropsis limnetica in Pi-replete and Pi-limited medium contaminated with one of three commonly human used pharmaceuticals: fluoxetine, ibuprofen, and propranolol. Secondly, we tested to what extent first level consumers (Daphnia magna) were affected when fed with pharmaceutical-grown algae. Chronic exposure, covering 30 generations, led to (i) decreased cell numbers of A. obliquus in the presence of fluoxetine (under Pi-replete conditions) (ii) increased carotenoid to chlorophyll ratios in N. limnetica (under Pi-limited conditions), and (iii) increased photosynthetic yields in A. obliquus (in both Pi-conditions). In addition, ibuprofen affected both algae and their consumer: Feeding ibuprofen-contaminated algae to Pi-stressed D. magna improved their survival. We demonstrate, that even very low concentrations of pharmaceuticals present in freshwater ecosystems can significantly affect aquatic organisms when chronically exposed. Our study indicates that pharmaceutical effects can cross trophic levels and travel up the food chain.}, language = {en} } @article{KoussoroplisSchaelickeRaatzetal.2019, author = {Koussoroplis, Apostolos-Manuel and Sch{\"a}licke, Svenja and Raatz, Michael and Bach, Moritz and Wacker, Alexander}, title = {Feeding in the frequency domain}, series = {Ecology letters}, volume = {22}, journal = {Ecology letters}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13267}, pages = {1104 -- 1114}, year = {2019}, abstract = {Theory predicts that resource variability hinders consumer performance. How this effect depends on the temporal structure of resource fluctuations encountered by individuals remains poorly understood. Combining modelling and growth experiments with Daphnia magna, we decompose the complexity of resource fluctuations and test the effect of resource variance, supply peak timing (i.e. phase) and co-limiting resource covariance along a gradient from high to low frequencies reflecting fine- to coarse-grained environments. Our results show that resource storage can buffer growth at high frequencies, but yields a sensitivity of growth to resource peak timing at lower ones. When two resources covary, negative covariance causes stronger growth depression at low frequencies. However, negative covariance might be beneficial at intermediate frequencies, an effect that can be explained by digestive acclimation. Our study provides a mechanistic basis for understanding how alterations of the environmental grain size affect consumers experiencing variable nutritional quality in nature.}, language = {en} } @article{KoussoroplisWacker2016, author = {Koussoroplis, Apostolos-Manuel and Wacker, Alexander}, title = {Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits}, series = {Ecology letters}, volume = {19}, journal = {Ecology letters}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12546}, pages = {143 -- 152}, year = {2016}, abstract = {Understanding animal performance in heterogeneous or variable environments is a central question in ecology. We combine modelling and experiments to test how temperature and food availability variance jointly affect life-history traits of ectotherms. The model predicts that as mean temperatures move away from the ectotherm's thermal optimum, the effect size of joint thermal and food variance should become increasingly sensitive to their covariance. Below the thermal optimum, performance should be positively correlated with food-temperature covariance and the opposite is predicted above it. At lower temperatures, covariance should determine whether food and temperature variance increases or decreases performance compared to constant conditions. Somewhat stronger than predicted, the covariance effect below the thermal optimum was confirmed experimentally on an aquatic ectotherm (Daphnia magna) exposed to diurnal food and temperature variance with different amounts of covariance. Our findings have important implications for understanding ectotherm responses to climate-driven alterations of thermal mean and variance.}, language = {en} } @article{MartinCreuzburgOexleWacker2014, author = {Martin-Creuzburg, Dominik and Oexle, Sarah and Wacker, Alexander}, title = {Thresholds for sterol-limited growth of Daphnia magna: A comparative approach using 10 different sterols}, series = {Journal of chemical ecology}, volume = {40}, journal = {Journal of chemical ecology}, number = {9}, publisher = {Springer}, address = {Dordrecht}, issn = {0098-0331}, doi = {10.1007/s10886-014-0486-1}, pages = {1039 -- 1050}, year = {2014}, abstract = {Arthropods are incapable of synthesizing sterols de novo and thus require a dietary source to cover their physiological demands. The most prominent sterol in animal tissues is cholesterol, which is an indispensable structural component of cell membranes and serves as precursor for steroid hormones. Instead of cholesterol, plants and algae contain a variety of different phytosterols. Consequently, herbivorous arthropods have to metabolize dietary phytosterols to cholesterol to meet their requirements for growth and reproduction. Here, we investigated sterol-limited growth responses of the freshwater herbivore Daphnia magna by supplementing a sterol-free diet with increasing amounts of 10 different phytosterols and comparing thresholds for sterol-limited growth. In addition, we analyzed the sterol composition of D. magna to explore sterol metabolic constraints and bioconversion capacities. We show that dietary phytosterols strongly differ in their potential to support somatic growth of D. magna. The dietary threshold concentrations obtained by supplementing the different sterols cover a wide range (3.5-34.4 mu g mg C-1) and encompass the one for cholesterol (8.9 mu g mg C-1), indicating that certain phytosterols are more efficient in supporting somatic growth than cholesterol (e.g., fucosterol, brassicasterol) while others are less efficient (e.g., dihydrocholesterol, lathosterol). The dietary sterol concentration gradients revealed that the poor quality of particular sterols can be alleviated partially by increasing dietary concentrations, and that qualitative differences among sterols are most pronounced at low to moderate dietary concentrations. We infer that the dietary sterol composition has to be considered in zooplankton nutritional ecology to accurately assess potential sterol limitations under field conditions.}, language = {en} } @article{LukasWacker2014, author = {Lukas, Marcus and Wacker, Alexander}, title = {Constraints by oxygen and food quality on carbon pathway regulation: a co-limitation study with an aquatic key herbivore}, series = {Ecology : a publication of the Ecological Society of America}, volume = {95}, journal = {Ecology : a publication of the Ecological Society of America}, number = {11}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, pages = {3068 -- 3079}, year = {2014}, abstract = {In food webs, herbivores are often constrained by low food quality in terms of mineral and biochemical limitations, which in aquatic ecosystems can co-occur with limited oxygen conditions. As low food quality implies that carbon (C) is available in excess, and therefore a regulation to get rid of excess C is crucial for the performance of consumers, we examined the C pathways (ingestion, feces release, excretion, and respiration) of a planktonic key herbivore (Daphnia magna). We tested whether consumer C pathways increase due to mineral (phosphorus, P) or biochemical (cholesterol and fatty acid) limitations and how these regulations vary when in addition oxygen is low. Under such conditions, at least the capability of the upregulation of respiration may be restricted. Furthermore, we discussed the potential role of the oxygen-transporting protein hemoglobin (Hb) in the regulation of C budgets. Different food quality constraints led to certain C regulation patterns to increase the removal of excess dietary C: P-limited D. magna increased excretion and respiration, while cholesterol-limited Daphnia in addition upregulated the release of feces. In contrast, the regulative effort was low and only feces release increased when D. magna was limited by a long-chain polyunsaturated fatty acid (eicosapentaenoic acid, EPA). Co-limiting oxygen did not always impact the discharge of excess C. We found the food-quality-induced upregulation of respiration was still present at low oxygen. In contrast, higher excretion of excess C was diminished at low oxygen supply. Besides the effect that the Hb concentration increased under low oxygen, our results indicate a low food-quality-induced increase in the Hb content of the animals. Overall, C budgeting is phenotypically plastic towards different (co-) limiting scenarios. These trigger specific regulation responses that could be the result of evolutionary adaptations.}, language = {en} } @article{MartinJagerNisbetetal.2014, author = {Martin, Benjamin and Jager, Tjalling and Nisbet, Roger M. and Preuss, Thomas G. and Grimm, Volker}, title = {Limitations of extrapolating toxic effects on reproduction to the population level}, series = {Ecological applications : a publication of the Ecological Society of America}, volume = {24}, journal = {Ecological applications : a publication of the Ecological Society of America}, number = {8}, publisher = {Wiley}, address = {Washington}, issn = {1051-0761}, doi = {10.1890/14-0656.1}, pages = {1972 -- 1983}, year = {2014}, abstract = {For the ecological risk assessment of toxic chemicals, standardized tests on individuals are often used as proxies for population-level effects. Here, we address the utility of one commonly used metric, reproductive output, as a proxy for population-level effects. Because reproduction integrates the outcome of many interacting processes (e.g., feeding, growth, allocation of energy to reproduction), the observed toxic effects in a reproduction test could be due to stress on one of many processes. Although this makes reproduction a robust endpoint for detecting stress, it may mask important population-level consequences if the different physiological processes stress affects are associated with different feedback mechanisms at the population level. We therefore evaluated how an observed reduction in reproduction found in a standard reproduction test translates to effects at the population level if it is caused by hypothetical toxicants affecting different physiological processes (physiological modes of action; PMoA). For this we used two consumer-resource models: the Yodzis-Innes (YI) model, which is mathematically tractable, but requires strong assumptions of energetic equivalence among individuals as they progress through ontogeny, and an individual-based implementation of dynamic energy budget theory (DEB-IBM), which relaxes these assumptions at the expense of tractability. We identified two important feedback mechanisms controlling the link between individual- and population-level stress in the YI model. These mechanisms turned out to also be important for interpreting some of the individual-based model results; for two PMoAs, they determined the population response to stress in both models. In contrast, others stress types involved more complex feedbacks, because they asymmetrically stressed the production efficiency of reproduction and somatic growth. The feedbacks associated with different PMoAs drastically altered the link between individual- and population-level effects. For example, hypothetical stressors with different PMoAs that had equal effects on reproduction had effects ranging from a negligible decline in biomass to population extinction. Thus, reproduction tests alone are of little use for extrapolating toxicity to the population level, but we showed that the ecological relevance of standard tests could easily be improved if growth is measured along with reproduction.}, language = {en} } @article{LukasSperfeldWacker2011, author = {Lukas, Marcus and Sperfeld, Erik and Wacker, Alexander}, title = {Growth Rate Hypothesis does not apply across colimiting conditions cholesterol limitation affects phosphorus homoeostasis of an aquatic herbivore}, series = {Functional ecology : an official journal of the British Ecological Society}, volume = {25}, journal = {Functional ecology : an official journal of the British Ecological Society}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0269-8463}, doi = {10.1111/j.1365-2435.2011.01876.x}, pages = {1206 -- 1214}, year = {2011}, abstract = {1. Herbivores show stronger control of element homoeostasis than primary producers, which can lead to constraints in carbon and nutrient transfer efficiencies from plants to animals. Insufficient dietary phosphorus (P) availability can cause reduced body P contents along with lower growth rates of animals, leading to a positive relationship between growth and body P. 2. We examined how a second limiting food component in combination with dietary P limitation influences growth and P homoeostasis of a herbivore and how this colimitation influences the hypothesized positive correlation between body P content and growth rates. Therefore, we investigated the responses in somatic growth and P stoichiometry of Daphnia magna raised on a range of diets with different amounts of P and the sterol cholesterol. 3. Somatic growth rates of D. magna increased asymptotically with increasing P as well as with increasing cholesterol availability. The body P content increased with increasing dietary P and stabilized at high dietary P availability. The observed plasticity in D. magna's P stoichiometry became stronger with increasing cholesterol availability, i.e. with decreasing colimitation by cholesterol. 4. At P-limiting conditions, the positive correlation between body P content and growth rate, as predicted by the growth rate hypothesis (GRH) applied to the within-species level, declined with increasing cholesterol limitation and disappeared entirely when cholesterol was not supplied. Thus, even when Daphnia shows no growth response owing to strong limitation by the colimiting nutrient, the body P content may vary substantially, calling into question the unconditional use of herbivores' P content as predictor of a potential P limitation in nature. 5. The observed interaction between dietary P and cholesterol on Daphnia's growth and stoichiometry can be used as a conceptual framework of how colimiting essential nutrients affect herbivore homoeostasis, and provide further insights into the applicability of the GRH within a consumer species.}, language = {en} } @article{MartinCreuzburgWackerZieseetal.2012, author = {Martin-Creuzburg, Dominik and Wacker, Alexander and Ziese, Christine and Kainz, Martin J.}, title = {Dietary lipid quality affects temperature-mediated reaction norms of a freshwater key herbivore}, series = {Oecologia}, volume = {168}, journal = {Oecologia}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-011-2155-1}, pages = {901 -- 912}, year = {2012}, abstract = {Temperature-mediated plasticity in life history traits strongly affects the capability of ectotherms to cope with changing environmental temperatures. We hypothesised that temperature-mediated reaction norms of ectotherms are constrained by the availability of essential dietary lipids, i.e. polyunsaturated fatty acids (PUFA) and sterols, as these lipids are involved in the homeoviscous adaptation of biological membranes to changing temperatures. A life history experiment was conducted in which the freshwater herbivore Daphnia magna was raised at four different temperatures (10, 15, 20, 25A degrees C) with food sources differing in their PUFA and sterol composition. Somatic growth rates increased significantly with increasing temperature, but differences among food sources were obtained only at 10A degrees C at which animals grew better on PUFA-rich diets than on PUFA-deficient diets. PUFA-rich food sources resulted in significantly higher population growth rates at 10A degrees C than PUFA-deficient food, and the optimum temperature for offspring production was clearly shifted towards colder temperatures with an increased availability of dietary PUFA. Supplementation of PUFA-deficient food with single PUFA enabled the production of viable offspring and significantly increased population growth rates at 10A degrees C, indicating that dietary PUFA are crucial for the acclimation to cold temperatures. In contrast, cumulative numbers of viable offspring increased significantly upon cholesterol supplementation at 25A degrees C and the optimum temperature for offspring production was shifted towards warmer temperatures, implying that sterol requirements increase with temperature. In conclusion, essential dietary lipids significantly affect temperature-mediated reaction norms of ectotherms and thus temperature-mediated plasticity in life history traits is subject to strong food quality constraints.}, language = {en} } @article{HartwichMartinCreuzburgWacker2013, author = {Hartwich, Melanie and Martin-Creuzburg, Dominik and Wacker, Alexander}, title = {Seasonal changes in the accumulation of polyunsaturated fatty acids in zooplankton}, series = {Journal of plankton research}, volume = {35}, journal = {Journal of plankton research}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbs078}, pages = {121 -- 134}, year = {2013}, abstract = {In aquatic food webs, consumers, such as daphnids and copepods, differ regarding their accumulation of polyunsaturated fatty acids (PUFAs). We tested if the accumulation of PUFAs in a seston size fraction containing different consumers and in Daphnia as a separate consumer is subject to seasonal changes in a large deep lake due to changes in the dietary PUFA supply and specific demands of different consumers. We found that the accumulation of arachidonic acid (ARA) in Daphnia increased from early summer to late summer and autumn. However, ARA requirements of Daphnia appeared to be constant throughout the year, because the accumulation of ARA increased when the dietary ARA supply decreased. In the size fraction 140 m, we found an increased accumulation of docosahexaenoic acid (DHA) during late summer and autumn. These seasonal changes in DHA accumulation were linked to changes in the proportion of copepods in this size fraction, which may have increasingly accumulated DHA for active overwintering. We show that consumer-specific PUFA demands can result in seasonal changes in PUFA accumulation, which may influence the trophic transfer of PUFAs within the food web.}, language = {en} } @article{BukovinszkyHelmsingGrauetal.2013, author = {Bukovinszky, Tibor and Helmsing, Nico R. and Grau, R. A. and Bakker, Elisabeth S. and Bezemer, T. Martijn and Vos, Matthijs and Uittenhout, H. and Verschoor, A. M.}, title = {A device to study the behavioral responses of zooplankton to food quality and quantity}, series = {Journal of insect behavior}, volume = {26}, journal = {Journal of insect behavior}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0892-7553}, doi = {10.1007/s10905-012-9366-0}, pages = {453 -- 465}, year = {2013}, abstract = {In order to explore the behavioral mechanisms underlying aggregation of foragers on local resource patches, it is necessary to manipulate the location, quality and quantity of food patches. This requires careful control over the conditions in the foraging arena, which may be a challenging task in the case of aquatic resource-consumer systems, like that of freshwater zooplankton feeding on suspended algal cells. We present an experimental tool designed to aid behavioral ecologists in exploring the consequences of resource characteristics for zooplankton aggregation behavior and movement decisions under conditions where the boundaries and characteristics (quantity and quality) of food patches can be standardized. The aggregation behavior of Daphnia magna and D. galeata x hyalina was tested in relation to i) the presence or absence of food or ii) food quality, where algae of high or low nutrient (phosphorus) content were offered in distinct patches. Individuals of both Daphnia species chose tubes containing food patches and D. galeata x hyalina also showed a preference towards food patches of high nutrient content. We discuss how the described equipment complements other behavioral approaches providing a useful tool to understand animal foraging decisions in environments with heterogeneous resource distributions.}, language = {en} }