@article{KleinpeterKoch2022, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Cyclazines-structure and aromaticity or antiaromaticity on the magnetic criterion}, series = {European journal of organic chemistry}, volume = {2022}, journal = {European journal of organic chemistry}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202101362}, pages = {12}, year = {2022}, abstract = {Structure and spatial magnetic properties, through-space NMR shieldings (TSNMRSs), of all ten cycl[2.2.2]azine to cycl[4.4.4]azine, hetero-analogues and the corresponding hydrocarbons have been calculated at the B3LYP/6-311G(d,p) theory level using the GIAO perturbation method and employing the nucleus independent chemical shift (NICS) concept. The TSNMRS values (actually, the ring current effect as measurable in H-1 NMR spectroscopy) are visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction, and employed to readily qualify and quantify the degree of (anti)aromaticity. Results are confirmed by NMR [delta(H-1)/ppm, delta(N-15)/ppm] and geometry (planar, twisted, bow-shaped) data. The cyclazines N[2.2.2](-) up to N[2.4.4](-) are planar or at most slightly bowl-shaped and, due to coherent peripheral ring currents (except in N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+)), develop aromaticity or anti-aromaticity of the whole molecules dependent on the number of peripheral conjugated pi electrons. The cyclazines N[2.3.3](-), N[2.3.4], N[3.3.4](+) and N[2.4.4](+) develop two ring currents of different direction within the same molecule, in which the dominating ring current proves to be paratropic (in N[3.3.4](+) diatropic) including the nodal N p(z) lone pair into the conjugation. The residual cyclazines N[3.4.4], N[4.4.4](-) and N[4.4.4](+) are heavily twisted and, therefore, are not developing peripheral or diverse ring currents. The TSNMRS information about cyclazines and the parent tricyclic annulene analogues is congruent subject to structure and number of peripheral or internal conjugated pi electrons, the corresponding (anti)aromaticity is in unequivocal accordance with Huckel's rule.}, language = {en} } @article{KleinpeterKoch2018, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Paramagnetic ring current effects in anti-aromatic structures subject to substitution/annelation quantified by spatial magnetic properties (TSNMRS)}, series = {Tetrahedron}, volume = {74}, journal = {Tetrahedron}, number = {7}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.12.020}, pages = {700 -- 710}, year = {2018}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of the typically anti-aromatic cyclopentadienyl cation, cyclobutadiene, pentalene, s-indacene and of substituted/annelated analogues of the latter structures have been calculated using the CIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to visualize and quantify the dia(para) magnetic ring current effects in the studied compounds. The interplay of dia(para)magnetic ring current effects due to substitution/annelation caused by heavy exo-cyclic n,pi-electron delocalization can be qualified.}, language = {en} } @article{KleinpeterKoch2017, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Identification of mesomeric substructures by through-space NMR shieldings (TSNMRS). Trimethine cyanine/merocyanine-like or aromatic pi-electron delocalization?}, series = {Tetrahedron}, volume = {73}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.05.062}, pages = {4265 -- 4274}, year = {2017}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of amino-substituted heteraromatic six-membered ring systems such as pyrylium/thiopyrylium analogues have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the existing aromaticity of the studied compounds. Due to strong conjugation of six-membered ring pi-electrons and lone pairs of the exo-cyclic amino substituents (restricted rotation about partial C,N double bonds) the interplay of still aromatic and already dominating trimethine cyanine/merocyanine-like substructures can be estimated. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZborowskiKochKleinpeteretal.2014, author = {Zborowski, Krzysztof Kazimierz and Koch, Andreas and Kleinpeter, Erich and Proniewicz, Leonard Marian}, title = {Searching for aromatic celate rings. Oxygen versus Thio and Seleno Ligands}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {228}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {8}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2014-0528}, pages = {869 -- 878}, year = {2014}, abstract = {As a part of searching for fully aromatic chelate compounds, copper complexes of malondialdehyde as well as its sulfur and selenium derivatives were investigated using the DFT quantum chemical methods. Chelate complexes of both Cu(I) and Cu(II) ions wereconsidered. Aromaticity of the metal complexes studied were analyzed using NICS(0), NICS(1), PDI, I-ring, MCI, ICMCI and I-B aromaticity indices, and by TSNMRS visualizations of the spatial magnetic properties. It seems that partial aromaticityof studied chelates increases when oxygen atoms in malondialdehyde are replaced by sulfur and selenium.}, language = {en} } @misc{Kleinpeter2014, author = {Kleinpeter, Erich}, title = {Quantification and visualization of the anisotropy effect in NMR spectroscopy by through-space NMR shieldings}, series = {Annual reports on NMR spectroscopy}, volume = {82}, journal = {Annual reports on NMR spectroscopy}, editor = {Webb, GA}, publisher = {Elsevier}, address = {San Diego}, isbn = {978-0-12-800184-4}, issn = {0066-4103}, doi = {10.1016/B978-0-12-800184-4.00003-5}, pages = {115 -- 166}, year = {2014}, abstract = {The anisotropy effect of functional groups (respectively the ring-current effect of aryl moieties) in H-1 NMR spectra has been computed as spatial NICS (through-space NMR chemical shieldings) and visualized by iso-chemical-shielding surfaces of various size and low(high) field direction. Hereby, the anisotropy/ring-current effect, which proves to be the molecular response property of spatial NICS, can be quantified and can be readily employed for assignment purposes in proton NMR spectroscopy-characteristic examples of stereochemistry and position assignments (the latter in supramolecular structures) will be given. In addition, anisotropy/ring-current effects in H-1 NMR spectra can be quantitatively separated from the second dominant structural effect in proton NMR spectra, the steric compression effect, pointing into the reverse direction, and the ring-current effect, by far the strongest anisotropy effect, can be impressively employed to visualize and quantify (anti) aromaticity and to clear up standing physical-organic phenomena as are pseudo-, spherical, captodative, homo-and chelatoaromaticity, to characterize the pi-electronic structure of, for example, fulvenes, fulvalenes, annulenes or fullerenes and to differentiate aromatic and quinonoid structures.}, language = {en} } @article{KleinpeterWernerKoch2013, author = {Kleinpeter, Erich and Werner, Peter and Koch, Andreas}, title = {Push-pull allenes-conjugation, (anti)aromaticity and quantification of the push-pull character}, series = {Tetrahedron}, volume = {69}, journal = {Tetrahedron}, number = {11}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2013.01.027}, pages = {2436 -- 2445}, year = {2013}, abstract = {Structures, H-1/C-13 chemical shifts, and pi electron distribution/conjugation of an experimentally available and theoretically completed set of push-pull allenes Acc(2)C=C=CDon(2) (Acc=F, CHO, CF3, C N; Don=t-Bu, OMe, OEt, SMe, SEt, NCH2R) have been computed at the OFT level of theory. Both orthogonal linear and orthogonal bent structures have been obtained. In the latter case the push-pull character could be quantified by the quotient method. The C-13 chemical shift of the central allene carbon atom C-2 and chemical shift differences Delta delta(C-1, C-2) and Delta delta(C-2, C-3) of allene carbon atoms proved to be a quantitative alternative. TSNMRS of ring-closed push-pull allenes have been computed in addition and were employed to identify polar, carbene-like and carbone-like canonical structures of these molecules.}, language = {en} }