@article{ZhuCottonKawaseetal.2022, author = {Zhu, Chuanbin and Cotton, Fabrice and Kawase, Hiroshi and H{\"a}ndel, Annabel and Pilz, Marco and Nakano, Kenichi}, title = {How well can we predict earthquake site response so far?}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {38}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, number = {2}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {8755-2930}, doi = {10.1177/87552930211060859}, pages = {1047 -- 1075}, year = {2022}, abstract = {Earthquake site responses or site effects are the modifications of surface geology to seismic waves. How well can we predict the site effects (average over many earthquakes) at individual sites so far? To address this question, we tested and compared the effectiveness of different estimation techniques in predicting the outcrop Fourier site responses separated using the general inversion technique (GIT) from recordings. Techniques being evaluated are (a) the empirical correction to the horizontal-to-vertical spectral ratio of earthquakes (c-HVSR), (b) one-dimensional ground response analysis (GRA), and (c) the square-root-impedance (SRI) method (also called the quarter-wavelength approach). Our results show that c-HVSR can capture significantly more site-specific features in site responses than both GRA and SRI in the aggregate, especially at relatively high frequencies. c-HVSR achieves a "good match" in spectral shape at similar to 80\%-90\% of 145 testing sites, whereas GRA and SRI fail at most sites. GRA and SRI results have a high level of parametric and/or modeling errors which can be constrained, to some extent, by collecting on-site recordings.}, language = {en} } @article{ZhuPilzCotton2020, author = {Zhu, Chuanbin and Pilz, Marco and Cotton, Fabrice Pierre}, title = {Evaluation of a novel application of earthquake HVSR in site-specific amplification estimation}, series = {Soil dynamics and earthquake engineering}, volume = {139}, journal = {Soil dynamics and earthquake engineering}, publisher = {Elsevier}, address = {Oxford}, issn = {0267-7261}, doi = {10.1016/j.soildyn.2020.106301}, pages = {14}, year = {2020}, abstract = {Ground response analyses (GRA) model the vertical propagations of SH waves through flat-layered media (1DSH) and are widely carried out to evaluate local site effects in practice. Horizontal-to-vertical spectral ratio (HVSR) technique is a cost-effective approach to extract certain site-specific information, e.g., site fundamental frequency (f(0)), but HVSR values cannot be directly used to approximate the levels of S-wave amplifications. Motivated by the work of Kawase et al. (2019), we propose a procedure to correct earthquake HVSR amplitudes for direct amplification estimations. The empirical correction compensates HVSR by generic vertical amplification spectra categorized by the vertical fundamental frequency (f(0v)) via kappa-means clustering. In this investigation, we evaluate the effectiveness of the corrected HVSR in approximating observed linear amplifications in comparison with 1DSH modellings. We select a total of 90 KiK-net (Kiban Kyoshin network) surface-downhole sites which are found to have no velocity contrasts below their boreholes and thus of which surface-to-borehole spectral ratios (SBSRs) can be taken as their empirical transfer functions (ETFs). 1DSH-based theoretical transfer functions (TTFs) are computed in the linear domain considering uncertainties in Vs profiles through randomizations. Five goodness-of-fit metrics are adopted to gauge the closeness between observed (ETF) and predicted (i.e., TTF and corrected HVSR) amplifications in both amplitude and spectral shape over frequencies from f(0) to 25 Hz. We find that the empirical correction to HVSR is highly effective and achieves a "good match" in both spectral shape and amplitude at the majority of the 90 KiK-net sites, as opposed to less than one-third for the 1DSH modelling. In addition, the empirical correction does not require a velocity model, which GRAs require, and thus has great potentials in seismic hazard assessments.}, language = {en} }