@article{SchmaelzlinMoralejoGersondeetal.2018, author = {Schm{\"a}lzlin, Elmar Gerd and Moralejo, Benito and Gersonde, Ingo and Schleusener, Johannes and Darvin, Maxim E. and Thiede, Gisela and Roth, Martin M.}, title = {Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination}, series = {Journal of biomedical optics}, volume = {23}, journal = {Journal of biomedical optics}, number = {10}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.23.10.105001}, pages = {11}, year = {2018}, abstract = {Imaging Raman spectroscopy can be used to identify cancerous tissue. Traditionally, a step-by-step scanning of the sample is applied to generate a Raman image, which, however, is too slow for routine examination of patients. By transferring the technique of integral field spectroscopy (IFS) from astronomy to Raman imaging, it becomes possible to record entire Raman images quickly within a single exposure, without the need for a tedious scanning procedure. An IFS-based Raman imaging setup is presented, which is capable of measuring skin ex vivo or in vivo. It is demonstrated how Raman images of healthy and cancerous skin biopsies were recorded and analyzed. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @misc{MaierWolfKeiligetal.2018, author = {Maier, Philipp and Wolf, J{\"u}rgen and Keilig, Thomas and Krabbe, Alfred and Duffard, Rene and Ortiz, Jose-Luis and Klinkner, Sabine and Lengowski, Michael and M{\"u}ller, Thomas and Lockowandt, Christian and Krockstedt, Christian and Kappelmann, Norbert and Stelzer, Beate and Werner, Klaus and Geier, Stephan Alfred and Kalkuhl, Christoph and Rauch, Thomas and Schanz, Thomas and Barnstedt, J{\"u}rgen and Conti, Lauro and Hanke, Lars}, title = {Towards a European Stratospheric Balloon Observatory}, series = {Ground-based and Airborne Telescopes VII}, volume = {10700}, journal = {Ground-based and Airborne Telescopes VII}, publisher = {SPIE-INT Soc Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-1954-8}, issn = {0277-786X}, doi = {10.1117/12.2319248}, pages = {12}, year = {2018}, abstract = {This paper presents the concept of a community-accessible stratospheric balloon-based observatory that is currently under preparation by a consortium of European research institutes and industry. We present the technical motivation, science case, instrumentation, and a two-stage image stabilization approach of the 0.5-m UV/visible platform. In addition, we briefly describe the novel mid-sized stabilized balloon gondola under design to carry telescopes in the 0.5 to 0.6 m range as well as the currently considered flight option for this platform. Secondly, we outline the scientific and technical motivation for a large balloon-based FIR telescope and the ESBO DS approach towards such an infrastructure.}, language = {en} }