@article{VogelPatonAichetal.2021, author = {Vogel, Johannes and Paton, Eva and Aich, Valentin and Bronstert, Axel}, title = {Increasing compound warm spells and droughts in the Mediterranean Basin}, series = {Weather and climate extremes}, volume = {32}, journal = {Weather and climate extremes}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-0947}, doi = {10.1016/j.wace.2021.100312}, pages = {14}, year = {2021}, abstract = {The co-occurrence of warm spells and droughts can lead to detrimental socio-economic and ecological impacts, largely surpassing the impacts of either warm spells or droughts alone. We quantify changes in the number of compound warm spells and droughts from 1979 to 2018 in the Mediterranean Basin using the ERA5 data set. We analyse two types of compound events: 1) warm season compound events, which are extreme in absolute terms in the warm season from May to October and 2) year-round deseasonalised compound events, which are extreme in relative terms respective to the time of the year. The number of compound events increases significantly and especially warm spells are increasing strongly - with an annual growth rates of 3.9 (3.5) \% for warm season (deseasonalised) compound events and 4.6 (4.4) \% for warm spells -, whereas for droughts the change is more ambiguous depending on the applied definition. Therefore, the rise in the number of compound events is primarily driven by temperature changes and not the lack of precipitation. The months July and August show the highest increases in warm season compound events, whereas the highest increases of deseasonalised compound events occur in spring and early summer. This increase in deseasonalised compound events can potentially have a significant impact on the functioning of Mediterranean ecosystems as this is the peak phase of ecosystem productivity and a vital phenophase.}, language = {en} } @article{BouwerPapyrakisPoussinetal.2014, author = {Bouwer, Laurens M. and Papyrakis, Elissaios and Poussin, Jennifer and Pfurtscheller, Clemens and Thieken, Annegret}, title = {The costing of measures for natural hazard mitigation in Europe}, series = {Natural hazards review}, volume = {15}, journal = {Natural hazards review}, number = {4}, publisher = {American Society of Civil Engineers}, address = {Reston}, issn = {1527-6988}, doi = {10.1061/(ASCE)NH.1527-6996.0000133}, pages = {10}, year = {2014}, abstract = {The literature on the costing of mitigation measures for reducing impacts of natural hazards is rather fragmented. This paper provides a concise overview of the current state of knowledge in Europe on the costing of mitigation measures for the reduction of natural hazard risks (droughts, floods, storms and induced coastal hazards as well as alpine hazards) and identifies knowledge gaps and related research recommendations. Furthermore, it provides a taxonomy of related mitigation options, classifying them into nine categories: (1) management plans, land-use planning, and climate adaptation; (2) hazard modification; (3) infrastructure; (4) mitigation measures (stricto sensu); (5) communication in advance of events; (6) monitoring and early warning systems; (7) emergency response and evacuation; (8) financial incentives; and (9) risk transfer (including insurance). It is found that the costing of mitigation measures in European and in other countries has almost exclusively focused on estimating direct costs. A cost assessment framework that addresses a range of costs, possibly informed by multiple stakeholders, would provide more accurate estimates and could provide better guidance to decision makers. (C) 2014 American Society of Civil Engineers.}, language = {en} }