@article{KliemSeehafer2022, author = {Kliem, Bernhard and Seehafer, Norbert}, title = {Helicity shedding by flux rope ejection}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {659}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142422}, pages = {9}, year = {2022}, abstract = {We quantitatively address the conjecture that magnetic helicity must be shed from the Sun by eruptions launching coronal mass ejections in order to limit its accumulation in each hemisphere. By varying the ratio of guide and strapping field and the flux rope twist in a parametric simulation study of flux rope ejection from approximately marginally stable force-free equilibria, different ratios of self- and mutual helicity are set and the onset of the torus or helical kink instability is obtained. The helicity shed is found to vary over a broad range from a minor to a major part of the initial helicity, with self helicity being largely or completely shed and mutual helicity, which makes up the larger part of the initial helicity, being shed only partly. Torus-unstable configurations with subcritical twist and without a guide field shed up to about two-thirds of the initial helicity, while a highly twisted, kink-unstable configuration sheds only about one-quarter. The parametric study also yields stable force-free flux rope equilibria up to a total flux-normalized helicity of 0.25, with a ratio of self- to total helicity of 0.32 and a ratio of flux rope to external poloidal flux of 0.94. These results numerically demonstrate the conjecture of helicity shedding by coronal mass ejections and provide a first account of its parametric dependence. Both self- and mutual helicity are shed significantly; this reduces the total initial helicity by a fraction of ∼0.4--0.65 for typical source region parameters.}, language = {en} } @article{HassaninKliemSeehaferetal.2022, author = {Hassanin, Alshaimaa and Kliem, Bernhard and Seehafer, Norbert and T{\"o}r{\"o}k, Tibor}, title = {A model of homologous confined and ejective eruptions involving kink instability and flux cancellation}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {929}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ac64a9}, pages = {7}, year = {2022}, abstract = {In this study, we model a sequence of a confined and a full eruption, employing the relaxed end state of the confined eruption of a kink-unstable flux rope as the initial condition for the ejective one. The full eruption, a model of a coronal mass ejection, develops as a result of converging motions imposed at the photospheric boundary, which drive flux cancellation. In this process, parts of the positive and negative external flux converge toward the polarity inversion line, reconnect, and cancel each other. Flux of the same amount as the canceled flux transfers to a flux rope, increasing the free magnetic energy of the coronal field. With sustained flux cancellation and the associated progressive weakening of the magnetic tension of the overlying flux, we find that a flux reduction of approximate to 11\% initiates the torus instability of the flux rope, which leads to a full eruption. These results demonstrate that a homologous full eruption, following a confined one, can be driven by flux cancellation.}, language = {en} } @article{YanXueJiangetal.2022, author = {Yan, Xiaoli and Xue, Zhike and Jiang, Chaowei and Priest, E. R. and Kliem, Bernhard and Yang, Liheng and Wang, Jincheng and Kong, Defang and Song, Yongliang and Feng, Xueshang and Liu, Zhong}, title = {Fast plasmoid-mediated reconnection in a solar flare}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-28269-w}, pages = {14}, year = {2022}, abstract = {Magnetic reconnection is a multi-faceted process of energy conversion in astrophysical, space and laboratory plasmas that operates at microscopic scales but has macroscopic drivers and consequences. Solar flares present a key laboratory for its study, leaving imprints of the microscopic physics in radiation spectra and allowing the macroscopic evolution to be imaged, yet a full observational characterization remains elusive. Here we combine high resolution imaging and spectral observations of a confined solar flare at multiple wavelengths with data-constrained magnetohydrodynamic modeling to study the dynamics of the flare plasma from the current sheet to the plasmoid scale. The analysis suggests that the flare resulted from the interaction of a twisted magnetic flux rope surrounding a filament with nearby magnetic loops whose feet are anchored in chromospheric fibrils. Bright cusp-shaped structures represent the region around a reconnecting separator or quasi-separator (hyperbolic flux tube). The fast reconnection, which is relevant for other astrophysical environments, revealed plasmoids in the current sheet and separatrices and associated unresolved turbulent motions. Solar flares provide wide range of observational details about fundamental processes involved. Here, the authors show evidence for magnetic reconnection in a strong confined solar flare displaying all four reconnection flows with plasmoids in the current sheet and the separatrices.}, language = {en} } @article{ChengZhangKliemetal.2020, author = {Cheng, Xin and Zhang, Jie and Kliem, Bernhard and T{\"o}r{\"o}k, Tibor and Xing, Chen and Zhou, Zhenjun and Inhester, Bernd and Ding, Mingde}, title = {Initiation and early kinematic evolution of solar eruptions}, series = {The Astrophysical Journal}, volume = {894}, journal = {The Astrophysical Journal}, number = {2}, publisher = {Cambridge Scientific Publishers}, address = {Cambridge}, issn = {1055-6796}, doi = {10.3847/1538-4357/ab886a}, pages = {1 -- 20}, year = {2020}, abstract = {We investigate the initiation and early evolution of 12 solar eruptions, including six active-region hot channel and six quiescent filament eruptions, which were well observed by the Solar Dynamics Observatory, as well as by the Solar Terrestrial Relations Observatory for the latter. The sample includes one failed eruption and 11 coronal mass ejections, with velocities ranging from 493 to 2140 km s(-1). A detailed analysis of the eruption kinematics yields the following main results. (1) The early evolution of all events consists of a slow-rise phase followed by a main-acceleration phase, the height-time profiles of which differ markedly and can be best fit, respectively, by a linear and an exponential function. This indicates that different physical processes dominate in these phases, which is at variance with models that involve a single process. (2) The kinematic evolution of the eruptions tends to be synchronized with the flare light curve in both phases. The synchronization is often but not always close. A delayed onset of the impulsive flare phase is found in the majority of the filament eruptions (five out of six). This delay and its trend to be larger for slower eruptions favor ideal MHD instability models. (3) The average decay index at the onset heights of the main acceleration is close to the threshold of the torus instability for both groups of events (although, it is based on a tentative coronal field model for the hot channels), suggesting that this instability initiates and possibly drives the main acceleration.}, language = {en} } @article{GouLiuKliemetal.2019, author = {Gou, Tingyu and Liu, Rui and Kliem, Bernhard and Wang, Yuming and Veronig, Astrid M.}, title = {The birth of a coronal mass ejection}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {3}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aau7004}, pages = {9}, year = {2019}, abstract = {The Sun's atmosphere is frequently disrupted by coronal mass ejections (CMEs), coupled with flares and energetic particles. The coupling is usually attributed to magnetic reconnection at a vertical current sheet connecting the flare and CME, with the latter embedding a helical magnetic structure known as flux rope. However, both the origin of flux ropes and their nascent paths toward eruption remain elusive. Here, we present an observation of how a stellar-sized CME bubble evolves continuously from plasmoids, mini flux ropes that are barely resolved, within half an hour. The eruption initiates when plasmoids springing from a vertical current sheet merge into a leading plasmoid, which rises at increasing speeds and expands impulsively into the CME bubble, producing hard x-ray bursts simultaneously. This observation illuminates a complete CME evolutionary path capable of accommodating a wide variety of plasma phenomena by bridging the gap between microscale and macroscale dynamics.}, language = {en} } @article{ChenLiuLiuetal.2019, author = {Chen, Jun and Liu, Rui and Liu, Kai and Awasthi, Arun Kumar and Zhang, Peijin and Wang, Yuming and Kliem, Bernhard}, title = {Extreme-ultraviolet late phase of solar flares}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {890}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {Institute of Physics Publ.}, address = {London}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab6def}, pages = {10}, year = {2019}, abstract = {A second peak in the extreme ultraviolet sometimes appears during the gradual phase of solar flares, which is known as the EUV late phase (ELP). Stereotypically ELP is associated with two separated sets of flaring loops with distinct sizes, and it has been debated whether ELP is caused by additional heating or extended plasma cooling in the longer loop system. Here we carry out a survey of 55 M-and-above GOES-class flares with ELP during 2010-2014. Based on the flare-ribbon morphology, these flares are categorized as circular-ribbon (19 events), two-ribbon (23 events), and complex-ribbon (13 events) flares. Among them, 22 events (40\%) are associated with coronal mass ejections, while the rest are confined. An extreme ELP, with the late-phase peak exceeding the main-phase peak, is found in 48\% of two-ribbon flares, 37\% of circular-ribbon flares, and 31\% of complex-ribbon flares, suggesting that additional heating is more likely present during ELP in two-ribbon than in circular-ribbon flares. Overall, cooling may be the dominant factor causing the delay of the ELP peak relative to the main-phase peak, because the loop system responsible for the ELP emission is generally larger than, and well separated from, that responsible for the main-phase emission. All but one of the circular-ribbon flares can be well explained by a composite "dome-plate" quasi-separatrix layer (QSL). Only half of these show a magnetic null point, with its fan and spine embedded in the dome and plate, respectively. The dome-plate QSL, therefore, is a general and robust structure characterizing circular-ribbon flares.}, language = {en} } @article{LeeWhiteLiuetal.2018, author = {Lee, Jeongwoo and White, Stephen M. and Liu, Chang and Kliem, Bernhard and Masuda, Satoshi}, title = {Magnetic Structure of a Composite Solar Microwave Burst}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaadbc}, pages = {10}, year = {2018}, abstract = {A composite flare consisting of an impulsive flare SOL2015-06-21T01:42 (GOES class M2.0) and a more gradual, long-duration flare SOL2015-06-21T02:36 (M2.6) from NOAA Active Region 12371, is studied using observations with the Nobeyama Radioheliograph (NoRH) and the Solar Dynamics Observatory (SDO). While composite flares are defined by their characteristic time profiles, in this paper we present imaging observations that demonstrate the spatial relationship of the two flares and allow us to address the nature of the evolution of a composite event. The NoRH maps show that the first flare is confined not only in time, but also in space, as evidenced by the stagnation of ribbon separation and the stationarity of the microwave source. The NoRH also detected another microwave source during the second flare, emerging from a different location where thermal plasma is so depleted that accelerated electrons could survive longer against Coulomb collisional loss. The AIA 131 angstrom images show that a sigmoidal EUV hot channel developed after the first flare and erupted before the second flare. We suggest that this eruption removed the high-lying flux to let the separatrix dome underneath reconnect with neighboring flux and the second microwave burst follow. This scenario explains how the first microwave burst is related to the much-delayed second microwave burst in this composite event.}, language = {en} } @article{ChengKliemDing2018, author = {Cheng, Xin and Kliem, Bernhard and Ding, Mingde}, title = {Unambiguous evidence of filament splitting-induced partial eruptions}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab08d}, pages = {15}, year = {2018}, abstract = {Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter.}, language = {en} } @article{VeronigPodladchikovaDissaueretal.2018, author = {Veronig, Astrid M. and Podladchikova, Tatiana and Dissauer, Karin and Temmer, Manuela and Seaton, Daniel B. and Long, David and Guo, Jingnan and Vrsnak, Bojan and Harra, Louise and Kliem, Bernhard}, title = {Genesis and Impulsive Evolution of the 2017 September 10 Coronal Mass Ejection}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {868}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaeac5}, pages = {17}, year = {2018}, abstract = {The X8.2 event of 2017 September 10 provides unique observations to study the genesis, magnetic morphology, and impulsive dynamics of a very fast coronal mass ejection (CME). Combining GOES-16/SUVI and SDO/AIA EUV imagery, we identify a hot (T approximate to 10-15 MK) bright rim around a quickly expanding cavity, embedded inside a much larger CME shell (T approximate to 1-2 MK). The CME shell develops from a dense set of large AR loops ( greater than or similar to 0.5R(s)) and seamlessly evolves into the CME front observed in LASCO C2. The strong lateral overexpansion of the CME shell acts as a piston initiating the fast EUV wave. The hot cavity rim is demonstrated to be a manifestation of the dominantly poloidal flux and frozen-in plasma added to the rising flux rope by magnetic reconnection in the current sheet beneath. The same structure is later observed as the core of the white-light CME, challenging the traditional interpretation of the CME three-part morphology. The large amount of added magnetic flux suggested by these observations explains the extreme accelerations of the radial and lateral expansion of the CME shell and cavity, all reaching values of 5-10 km s(-2). The acceleration peaks occur simultaneously with the first RHESSI 100-300 keV hard X-ray burst of the associated flare, further underlining the importance of the reconnection process for the impulsive CME evolution. Finally, the much higher radial propagation speed of the flux rope in relation to the CME shell causes a distinct deformation of the white-light CME front and shock.}, language = {en} } @article{HassaninKliemSeehafer2016, author = {Hassanin, Alshaimaa and Kliem, Bernhard and Seehafer, Norbert}, title = {Helical kink instability in the confined solar eruption on 2002 May 27}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612446}, pages = {1082 -- 1089}, year = {2016}, language = {en} }