@article{Megow2015, author = {Megow, J{\"o}rg}, title = {How Van der Waals Interactions Influence the Absorption Spectra of Pheophorbide a Complexes: A Mixed Quantum-Classical Study}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {16}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201500326}, pages = {3101 -- 3107}, year = {2015}, abstract = {The computation of dispersive site energy shifts due to van der Waals interaction (London dispersion forces) was combined with mixed quantum-classical methodology to calculate the linear optical absorption spectra of large pheophorbide a (Pheo) dendrimers. The computed spectra agreed very well with the measurements considering three characteristic optical features occurring with increasing aggregate size: a strong line broadening, a redshift, and a low-energy shoulder. The improved mixed quantum-classical methodology is considered a powerful tool in investigating molecular aggregates.}, language = {en} } @article{JordanFechlerXuetal.2015, author = {Jordan, Thomas and Fechler, Nina and Xu, Jingsan and Brenner, Thomas J. K. and Antonietti, Markus and Shalom, Menny}, title = {"Caffeine Doping" of Carbon/Nitrogen-Based Organic Catalysts: Caffeine as a Supramolecular Edge Modifier for the Synthesis of Photoactive Carbon Nitride Tubes}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {7}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1867-3880}, doi = {10.1002/cctc.201500343}, pages = {2826 -- 2830}, year = {2015}, abstract = {An alternative method for the structure tuning of carbon nitride materials by using a supramolecular approach in combination with caffeine as lining-agent is described. The self-assembly of the precursor complex consisting of melamine and cyanuric acid can be controlled by this doping molecule in terms of morphology, electronic, and photophysical properties. Caffeine is proposed to insert as an edge-molecule eventually leading to hollow tube-like carbon nitride structures with improved efficiency of charge formation. Compared to the bulk carbon nitride, the caffeine-doped analogue possesses a higher photocatalytic activity for the degradation of rhodamineB dye. Furthermore, this approach is also shown to be suitable for the modification of carbon nitride electrodes.}, language = {en} }