@misc{Leimkuehler2020, author = {Leimk{\"u}hler, Silke}, title = {The biosynthesis of the molybdenum cofactors in Escherichia coli}, series = {Environmental microbiology}, volume = {22}, journal = {Environmental microbiology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.15003}, pages = {2007 -- 2026}, year = {2020}, abstract = {The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5 '-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.}, language = {en} } @article{SarauliBorowskiPetersetal.2016, author = {Sarauli, David and Borowski, Anja and Peters, Kristina and Schulz, Burkhard and Fattakhova-Rohlfing, Dina and Leimk{\"u}hler, Silke and Lisdat, Fred}, title = {Investigation of the pH-Dependent Impact of Sulfonated Polyaniline on Bioelectrocatalytic Activity of Xanthine Dehydrogenase}, series = {ACS catalysis}, volume = {6}, journal = {ACS catalysis}, publisher = {American Chemical Society}, address = {Washington}, issn = {2155-5435}, doi = {10.1021/acscatal.6b02011}, pages = {7152 -- 7159}, year = {2016}, abstract = {We report on the pH-dependent bioelectrocatalytic activity of the redox enzyme xanthine dehydrogenase (XDH) in the presence of sulfonated polyaniline PMSA1 (poly(2-methoxyaniline-5-sulfonic acid)-co-aniline). Ultraviolet-visible (UV-vis) spectroscopic measurements with both components in solution reveal electron transfer from the hypoxanthine (HX)-reduced enzyme to the polymer. The enzyme shows bioelectrocatalytic activity on indium tin oxide (ITO) electrodes, when the polymer is present. Depending on solution pH, different processes can be identified. It can be demonstrated that not only product-based communication with the electrode but also efficient polymer-supported bioelectrocatalysis occur. Interestingly, substrate dependent catalytic currents can be obtained in acidic and neutral solutions, although the highest activity of XDH with natural reaction partners is in the alkaline region. Furthermore, operation of the enzyme electrode without addition of the natural cofactor of XDH is feasible. Finally, macroporous ITO electrodes have been used as an immobilization platform for the fabrication of HX-sensitive electrodes. The study shows that the efficient polymer/enzyme interaction can be advantageously combined with the open structure of an electrode material of controlled pore size, resulting in good processability, stability, and defined signal transfer in the presence of a substrate.}, language = {en} }