@article{MeyerPetrovPohl2020, author = {Meyer, Dominique M.-A. and Petrov, Mykola and Pohl, Martin}, title = {Wind nebulae and supernova remnants of very massive stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {493}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa554}, pages = {3548 -- 3564}, year = {2020}, abstract = {A very small fraction of (runaway) massive stars have masses exceeding 60-70 M-circle dot and are predicted to evolve as luminous blue variable and Wolf-Rayet stars before ending their lives as core-collapse supernovae. Our 2D axisymmetric hydrodynamical simulations explore how a fast wind (2000 km s(-1)) and high mass-loss rate (10(-5)M(circle dot) yr(-1)) can impact the morphology of the circumstellar medium. It is shaped as 100 pc-scale wind nebula that can be pierced by the driving star when it supersonically moves with velocity 20-40 km s(-1) through the interstellar medium (ISM) in the Galactic plane. The motion of such runaway stars displaces the position of the supernova explosion out of their bow shock nebula, imposing asymmetries to the eventual shock wave expansion and engendering Cygnus-loop-like supernova remnants. We conclude that the size (up to more than 200 pc) of the filamentary wind cavity in which the chemically enriched supernova ejecta expand, mixing efficiently the wind and ISM materials by at least 10 per cent in number density, can be used as a tracer of the runaway nature of the very massive progenitors of such 0.1Myr old remnants. Our results motivate further observational campaigns devoted to the bow shock of the very massive stars BD+43 degrees 3654 and to the close surroundings of the synchrotron-emitting Wolf-Rayet shell G2.4+1.4.}, language = {en} } @article{SparrePfrommerVogelsberger2018, author = {Sparre, Martin and Pfrommer, Christoph and Vogelsberger, Mark}, title = {The physics of multiphase gas flows}, series = {Monthly notices of the Royal Astronomical Society}, volume = {482}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty3063}, pages = {5401 -- 5421}, year = {2018}, abstract = {Galactic winds exhibit a multiphase structure that consists of hot-diffuse and cold-dense phases. Here we present high-resolution idealized simulations of the interaction of a hot supersonic wind with a cold cloud with the moving-mesh code AREPO in setups with and without radiative cooling. We demonstrate that cooling causes clouds with sizes larger than the cooling length to fragment in 2D and 3D simulations. We confirm earlier 2D simulations by McCourt et al. (2018) and highlight differences of the shattering processes of 3D clouds that are exposed to a hot wind. The fragmentation process is quantified with a friends-of-friends analysis of shattered cloudlets and density power spectra. Those show that radiative cooling causes the power spectral index to gradually increase when the initial cloud radius is larger than the cooling length and with increasing time until the cloud is fully dissolved in the hot wind. A resolution of around 1 pc is required to reveal the effect of cooling-induced fragmentation of a 100 pc outflowing cloud. Thus, state-of-the-art cosmological zoom simulations of the circumgalactic medium fall short by orders of magnitudes from resolving this fragmentation process. This physics is, however, necessary to reliably model observed column densities and covering fractions of Lyman alpha haloes, high-velocity clouds, and broad-line regions of active galactic nuclei.}, language = {en} } @article{DespaliSparreVegettietal.2019, author = {Despali, Giulia and Sparre, Martin and Vegetti, Simona and Vogelsberger, Mark and Zavala, Jes{\´u}s and Marinacci, Federico}, title = {The interplay of self-interacting dark matter and baryons in shaping the halo evolution}, series = {Monthly notices of the Royal Astronomical Society}, volume = {484}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz273}, pages = {4563 -- 4573}, year = {2019}, abstract = {We use high-resolution hydrodynamical simulation to test the difference of halo properties in cold dark matter (CDM) and a self-interacting dark matter (SIDM) scenario with a constant cross-section of sigma(T)/m(x) = 1 cm(2) g(-1). We find that the interplay between dark matter self-interaction and baryonic physics induces a complex evolution of the halo properties, which depends on the halo mass and morphological type, as well as on the halo mass accretion history. While high-mass haloes, selected as analogues of early-type galaxies, show cored profiles in the SIDM run, systems of intermediate mass and with a significant disc component can develop a profile that is similar or cuspier than in CDM. The final properties of SIDM haloes - measured at z = 0.2 - correlate with the halo concentration and formation time, suggesting that the differences between different systems are due to the fact that we are observing the impact of self-interaction. We also search for signatures of SIDM in the lensing signal of the main haloes and find hints of potential differences in the distribution of Einstein radii, which suggests that future wide-field survey might be able to distinguish between CDM and SIDM models on this basis. Finally, we find that the subhalo abundances are not altered in the adopted SIDM model with respect to CDM.}, language = {en} } @article{WhittinghamSparrePfrommeretal.2021, author = {Whittingham, Joseph and Sparre, Martin and Pfrommer, Christoph and Pakmor, R{\"u}diger}, title = {The impact of magnetic fields on cosmological galaxy mergers}, series = {Monthly notices of the Royal Astronomical Society}, volume = {506}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab1425}, pages = {229 -- 255}, year = {2021}, abstract = {Mergers play an important role in galaxy evolution. In particular, major mergers are able to have a transformative effect on galaxy morphology. In this paper, we investigate the role of magnetic fields in gas-rich major mergers. To this end, we run a series of high-resolution magnetohydrodynamic (MHD) zoom-in simulations with the moving-mesh code arepo and compare the outcome with hydrodynamic simulations run from the same initial conditions. This is the first time that the effect of magnetic fields in major mergers has been investigated in a cosmologically consistent manner. In contrast to previous non-cosmological simulations, we find that the inclusion of magnetic fields has a substantial impact on the production of the merger remnant. Whilst magnetic fields do not strongly affect global properties, such as the star formation history, they are able to significantly influence structural properties. Indeed, MHD simulations consistently form remnants with extended discs and well-developed spiral structure, whilst hydrodynamic simulations form more compact remnants that display distinctive ring morphology. We support this work with a resolution study and show that whilst global properties are broadly converged across resolution and physics models, morphological differences only develop given sufficient resolution. We argue that this is due to the more efficient excitement of a small-scale dynamo in higher resolution simulations, resulting in a more strongly amplified field that is better able to influence gas dynamics.}, language = {en} } @article{HaniEllisonSparreetal.2019, author = {Hani, Maan H. and Ellison, Sara L. and Sparre, Martin and Grand, Robert J. J. and Pakmor, R{\"u}diger and G{\´o}mez, Facundo A. and Springel, Volker}, title = {The diversity of the circumgalactic medium around z=0 Milky Way-mass galaxies from the Auriga simulations}, series = {Monthly notices of the Royal Astronomical Society}, volume = {488}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1708}, pages = {135 -- 152}, year = {2019}, abstract = {Galaxies are surrounded by massive gas reservoirs ( i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred from absorption line surveys which rely on a limited number of single lines-of-sight. In this work we present an analysis of 28 galaxy haloes selected from the Auriga project, a cosmological magneto-hydrodynamical zoom-in simulation suite of isolated MilkyWay-mass galaxies, to understand the impact of CGM diversity on observational studies. Although the Auriga haloes are selected to populate a narrow range in halo mass, our work demonstrates that the CGM of L-star galaxies is extremely diverse: column densities of commonly observed species span similar to 3-4 dex and their covering fractions range from similar to 5 to 90 per cent. Despite this diversity, we identify the following correlations: 1) the covering fractions ( CF) of hydrogen and metals of the Auriga haloes positively correlate with stellar mass, 2) the CF of H I, C IV, and Si II anticorrelate with active galactic nucleus luminosity due to ionization effects, and 3) the CF of H I, C IV, and Si II positively correlate with galaxy disc fraction due to outflows populating the CGM with cool and dense gas. The Auriga sample demonstrates striking diversity within the CGM of L-star galaxies, which poses a challenge for observations reconstructing CGM characteristics from limited samples, and also indicates that long-term merger assembly history and recent star formation are not the dominant sculptors of the CGM.}, language = {en} } @article{NuzaParisiScannapiecoetal.2014, author = {Nuza, Sebastian E. and Parisi, Florencia and Scannapieco, Cecilia and Richter, Philipp and Gottloeber, Stefan and Steinmetz, Matthias}, title = {The distribution of gas in the Local Group from constrained cosmological simulations: the case for Andromeda and the Milky Way galaxies}, series = {Monthly notices of the Royal Astronomical Society}, volume = {441}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stu643}, pages = {2593 -- 2612}, year = {2014}, abstract = {We study the gas distribution in the Milky Way and Andromeda using a constrained cosmological simulation of the Local Group (LG) within the context of the CLUES (Constrained Local UniversE Simulations) project. We analyse the properties of gas in the simulated galaxies at z = 0 for three different phases: 'cold', 'hot' and H i, and compare our results with observations. The amount of material in the hot halo (M-hot a parts per thousand 4-5 x 10(10) M-aS (TM)), and the cold (M-cold(r a parts per thousand(2) 10 kpc) a parts per thousand 10(8) M-aS (TM)) and H i components displays reasonable agreement with observations. We also compute the accretion/ejection rates together with the H i (radial and all-sky) covering fractions. The integrated H i accretion rate within r = 50 kpc gives similar to 0.2-0.3 M-aS (TM) yr(-1), i.e. close to that obtained from high-velocity clouds in the Milky Way. We find that the global accretion rate is dominated by hot material, although ionized gas with T a parts per thousand(2) 10(5) K can contribute significantly too. The net accretion rates of all material at the virial radii are 6-8 M-aS (TM) yr(-1). At z = 0, we find a significant gas excess between the two galaxies, as compared to any other direction, resulting from the overlap of their gaseous haloes. In our simulation, the gas excess first occurs at z similar to 1, as a result of the kinematical evolution of the LG.}, language = {en} } @article{KobzarNiemiecPohletal.2017, author = {Kobzar, Oleh and Niemiec, Jacek and Pohl, Martin and Bohdan, Artem}, title = {Spatio-temporal evolution of the non-resonant instability in shock precursors of young supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {469}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {ANTARES Collaboration;H E S S Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stx1201}, pages = {4985 -- 4998}, year = {2017}, abstract = {A non-resonant cosmic ray (CR) current-driven instability may operate in the shock precursors of young supernova remnants and be responsible for magnetic-field amplification, plasma heating and turbulence. Earlier simulations demonstrated magnetic-field amplification, and in kinetic studies a reduction of the relative drift between CRs and thermal plasma was observed as backreaction. However, all published simulations used periodic boundary conditions, which do not account for mass conservation in decelerating flows and only allow the temporal development to be studied. Here we report results of fully kinetic particle-in-cell simulations with open boundaries that permit inflow of plasma on one side of the simulation box and outflow at the other end, hence allowing an investigation of both the temporal and the spatial development of the instability. Magnetic-field amplification proceeds as in studies with periodic boundaries and, observed here for the first time, the reduction of relative drifts causes the formation of a shock-like compression structure at which a fraction of the plasma ions are reflected. Turbulent electric field generated by the non-resonant instability inelastically scatters CRs, modifying and anisotropizing their energy distribution. Spatial CR scattering is compatible with Bohm diffusion. Electromagnetic turbulence leads to significant non-adiabatic heating of the background plasma maintaining bulk equipartition between ions and electrons. The highest temperatures are reached at sites of large-amplitude electrostatic fields. Ion spectra show supra-thermal tails resulting from stochastic scattering in the turbulent electric field. Together, these modifications in the plasma flow will affect the properties of the shock and particle acceleration there.}, language = {en} } @article{HollerSchoeckEgeretal.2012, author = {Holler, M. and Schoeck, F. M. and Eger, P. and Kiessling, D. and Valerius, K. and Stegmann, Christian}, title = {Spatially resolved X-ray spectroscopy and modeling of the nonthermal emission of the pulsar wind nebula in G0.9+0.1}, series = {ASTRONOMY \& ASTROPHYSICS}, volume = {539}, journal = {ASTRONOMY \& ASTROPHYSICS}, number = {2}, publisher = {EDP SCIENCES S A}, address = {LES ULIS CEDEX A}, issn = {0004-6361}, doi = {10.1051/0004-6361/201118121}, pages = {8}, year = {2012}, abstract = {Aims. We performed a spatially resolved spectral X-ray study of the pulsar wind nebula ( PWN) in the supernova remnant G0.9+ 0.1. Furthermore, we modeled its nonthermal emission in the X-ray and very high-energy (VHE, E > 100 GeV) gamma-ray regime. Methods. Using Chandra ACIS-S3 data, we investigated the east-west dependence of the spectral properties of G0.9+ 0.1 by calculating hardness ratios. We analyzed the EPIC-MOS and EPIC-pn data of two on-axis observations of the XMM-Newton telescope and extracted spectra of four annulus-shaped regions, centered on the region of brightest emission of the source. A radially symmetric leptonic model was applied in order to reproduce the observed X-ray emission of the inner part of the PWN. Using the optimized model parameter values obtained from the X-ray analysis, we then compared the modeled inverse Compton (IC) radiation with the published H.E.S.S. gamma-ray data. Results. The spectral index within the four annuli increases with growing distance to the pulsar, whereas the surface brightness drops. With the adopted model we are able to reproduce the characteristics of the X-ray spectra. The model results for the VHE. radiation, however, strongly deviate from the H.E.S.S. data.}, language = {en} } @article{MeyerKreplinKrausetal.2019, author = {Meyer, Dominique M.-A. and Kreplin, Alexander and Kraus, S. and Vorobyov, E. I. and Haemmerl{\´e}, Lionel and Eisl{\"o}ffel, Jochen}, title = {On the ALMA observability of nascent massive multiple systems formed by gravitational instability}, series = {Monthly notices of the Royal Astronomical Society}, volume = {487}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1585}, pages = {4473 -- 4491}, year = {2019}, abstract = {Massive young stellar objects (MYSOs) form during the collapse of high-mass pre-stellar cores, where infalling molecular material is accreted through a centrifugally balanced accretion disc that is subject to efficient gravitational instabilities. In the resulting fragmented accretion disc of the MYSO, gaseous clumps and low-mass stellar companions can form, which will influence the future evolution of massive protostars in the Hertzsprung-Russell diagram. We perform dust continuum radiative transfer calculations and compute synthetic images of disc structures modelled by the gravito-radiation-hydrodynamics simulation of a forming MYSO, in order to investigate the Atacama Large Millimeter/submillimeter Array (alma) observability of circumstellar gaseous clumps and forming multiple systems. Both spiral arms and gaseous clumps located at similar or equal to a few from the protostar can be resolved by interferometric alma Cycle 7 C43-8 and C43-10 observations at band 6 (), using a maximal 0.015 aracsec beam angular resolution and at least exposure time for sources at distances of . Our study shows that substructures are observable regardless of their viewing geometry or can be inferred in the case of an edge-viewed disc. The observation probability of the clumps increases with the gradually increasing efficiency of gravitational instability at work as the disc evolves. As a consequence, large discs around MYSOs close to the zero-age-main-sequence line exhibit more substructures than at the end of the gravitational collapse. Our results motivate further observational campaigns devoted to the close surroundings of the massive protostars S255IR-NIRS3 and NGC 6334I-MM1, whose recent outbursts are a probable signature of disc fragmentation and accretion variability.}, language = {en} } @article{NiemiecPohlBretetal.2012, author = {Niemiec, Jacek and Pohl, Martin and Bret, Antoine and Wieland, Volkmar}, title = {Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {759}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/759/1/73}, pages = {20}, year = {2012}, abstract = {We present results of 2D3V particle-in-cell simulations of nonrelativistic plasma collisions with absent or parallel large-scale magnetic field for parameters applicable to the conditions at young supernova remnants. We study the collision of plasma slabs of different density, leading to two different shocks and a contact discontinuity. Electron dynamics play an important role in the development of the system. While nonrelativistic shocks in both unmagnetized and magnetized plasmas can be mediated by Weibel-type instabilities, the efficiency of shock-formation processes is higher when a large-scale magnetic field is present. The electron distributions downstream of the forward and reverse shocks are generally isotropic, whereas that is not always the case for the ions. We do not see any significant evidence of pre-acceleration, neither in the electron population nor in the ion distribution.}, language = {en} }