@article{SaviComitiStrecker2021, author = {Savi, Sara and Comiti, Francesco and Strecker, Manfred}, title = {Pronounced increase in slope instability linked to global warming}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {46}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {7}, publisher = {Wiley}, address = {New York}, issn = {0197-9337}, doi = {10.1002/esp.5100}, pages = {1328 -- 1347}, year = {2021}, abstract = {In recent decades, slope instability in high-mountain regions has often been linked to increase in temperature and the associated permafrost degradation and/or the increase in frequency/intensity of rainstorm events. In this context we analyzed the spatiotemporal evolution and potential controlling mechanisms of small- to medium-sized mass movements in a high-elevation catchment of the Italian Alps (Sulden/Solda basin). We found that slope-failure events (mostly in the form of rockfalls) have increased since the 2000s, whereas the occurrence of debris flows has increased only since 2010. The current climate-warming trend registered in the study area apparently increases the elevation of rockfall-detachment areas by approximately 300 m, mostly controlled by the combined effects of frost-cracking and permafrost thawing. In contrast, the occurrence of debris flows does not exhibit such an altitudinal shift, as it is primarily driven by extreme precipitation events exceeding the 75th percentile of the intensity-duration rainfall distribution. Potential debris-flow events in this environment may additionally be influenced by the accumulation of unconsolidated debris over time, which is then released during extreme rainfall events. Overall, there is evidence that the upper Sulden/Solda basin (above ca. 2500 m above sea level [a.s.l.]), and especially the areas in the proximity of glaciers, have experienced a significant decrease in slope stability since the 2000s, and that an increase in rockfalls and debris flows during spring and summer can be inferred. Our study thus confirms that "forward-looking" hazard mapping should be undertaken in these increasingly frequented, high-elevation areas of the Alps, as environmental change has elevated the overall hazard level in these regions.}, language = {en} } @misc{FanScaringiKorupetal.2019, author = {Fan, Xuanmei and Scaringi, Gianvito and Korup, Oliver and West, A. Joshua and van Westen, Cees J. and Tanyas, Hakan and Hovius, Niels and Hales, Tristram C. and Jibson, Randall W. and Allstadt, Kate E. and Zhang, Limin and Evans, Stephen G. and Xu, Chong and Li, Gen and Pei, Xiangjun and Xu, Qiang and Huang, Runqiu}, title = {Earthquake-Induced Chains of Geologic Hazards}, series = {Reviews of geophysics}, volume = {57}, journal = {Reviews of geophysics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {8755-1209}, doi = {10.1029/2018RG000626}, pages = {421 -- 503}, year = {2019}, abstract = {Large earthquakes initiate chains of surface processes that last much longer than the brief moments of strong shaking. Most moderate- and large-magnitude earthquakes trigger landslides, ranging from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundreds of kilometers downstream. Landslide deposits on slopes can remobilize during heavy rainfall and evolve into debris flows. Cracks and fractures can form and widen on mountain crests and flanks, promoting increased frequency of landslides that lasts for decades. More gradual impacts involve the flushing of excess debris downstream by rivers, which can generate bank erosion and floodplain accretion as well as channel avulsions that affect flooding frequency, settlements, ecosystems, and infrastructure. Ultimately, earthquake sequences and their geomorphic consequences alter mountain landscapes over both human and geologic time scales. Two recent events have attracted intense research into earthquake-induced landslides and their consequences: the magnitude M 7.6 Chi-Chi, Taiwan earthquake of 1999, and the M 7.9 Wenchuan, China earthquake of 2008. Using data and insights from these and several other earthquakes, we analyze how such events initiate processes that change mountain landscapes, highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface.}, language = {en} }