@article{LoodSchmidt2020, author = {Lood, Kajsa and Schmidt, Bernd}, title = {Stereoselective synthesis of conjugated polyenes based on tethered olefin metathesis and carbonyl olefination}, series = {The journal of organic chemistry}, volume = {85}, journal = {The journal of organic chemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.0c00446}, pages = {5122 -- 5130}, year = {2020}, abstract = {The combination of a highly stereoselective tethered olefin metathesis reaction and a Julia-Kocienski olefination is presented as a strategy for the synthesis of conjugated polyenes with at least one Z-configured C=C bond. The strategy is exemplified by the synthesis of the marine natural product (+)-bretonin B.}, language = {en} } @article{QinOschatz2020, author = {Qin, Qing and Oschatz, Martin}, title = {Overcoming chemical inertness under ambient conditions}, series = {ChemElectroChem}, volume = {7}, journal = {ChemElectroChem}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201901970}, pages = {878 -- 889}, year = {2020}, abstract = {Ammonia (NH3) synthesis by the electrochemical N-2 reduction reaction (NRR) is increasingly studied and proposed as an alternative process to overcome the disadvantages of Haber-Bosch synthesis by a more energy-efficient, carbon-free, delocalized, and sustainable process. An ever-increasing number of scientists are working on the improvement of the faradaic efficiency (FE) and NH3 production rate by developing novel catalysts, electrolyte concepts, and/or by contributing theoretical studies. The present Minireview provides a critical view on the interplay of different crucial aspects in NRR from the electrolyte, over the mechanism of catalytic activation of N-2, to the full electrochemical cell. Five critical questions are asked, discussed, and answered, each coupled with a summary of recent developments in the respective field. This article is not supposed to be a complete summary of recent research about NRR but provides a rather critical personal view on the field. It is the major aim to give an overview over crucial influences on different length scales to shine light on the sweet spots into which room for revolutionary instead of incremental improvements may exist.}, language = {en} } @article{BrenneckeErtugElfring2023, author = {Brennecke, Julia and Ertug, Gokhan and Elfring, Tom}, title = {Networking fast and slow}, series = {Journal of Management}, journal = {Journal of Management}, publisher = {Sage Publ.}, address = {London}, issn = {0149-2063}, doi = {10.1177/01492063221132483}, pages = {1 -- 29}, year = {2023}, abstract = {Growing interest in network dynamics has led to insights about patterns of network change, drivers of tie formation, and the temporal unfolding of the consequences of networks. To this area of inquiry, we introduce networking speed—the time that it takes for individuals to form a network tie—as an important but so far largely overlooked aspect. We develop a theory of networking speed that explains how different catalysts enable professionals to introduce variation into the speed with which they form interpersonal network ties. We discuss how such variation in the speed with which ties have been formed influences relational outcomes and the network returns that these ties generate. This discussion illustrates that high networking speed can entail advantages as well as pitfalls. We also explore temporal implications of networking speed—for instance, the persistence of the effects of speed over time. Overall, we conceptualize networking speed as a constitutive element of how interpersonal networks function in professional settings, and we propose a future research program for the integration of this novel concept into organizational network research.}, language = {en} }