@article{UchidaBinetAroraetal.2018, author = {Uchida, Ryusuke and Binet, Silvia and Arora, Neha and Jacopin, Gwenole and Alotaibi, Mohammad Hayal and Taubert, Andreas and Zakeeruddin, Shaik Mohammed and Dar, M. Ibrahim and Graetzel, Michael}, title = {Insights about the Absence of Rb Cation from the 3D Perovskite Lattice}, series = {Small}, volume = {14}, journal = {Small}, number = {36}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.201802033}, pages = {7}, year = {2018}, abstract = {Efficiencies >20\% are obtained from the perovskite solar cells (PSCs) employing Cs+ and Rb+ based perovskite compositions; therefore, it is important to understand the effect of these inorganic cations specifically Rb+ on the properties of perovskite structures. Here the influence of Cs+ and Rb+ is elucidated on the structural, morphological, and photophysical properties of perovskite structures and the photovoltaic performances of resulting PSCs. Structural, photoluminescence (PL), and external quantum efficiency studies establish the incorporation of Cs+ (x < 10\%) but amply rule out the possibility of Rb-incorporation into the MAPbI(3) (MA = CH3NH3+) lattice. Moreover, morphological studies and time-resolved PL show that both Cs+ and Rb+ detrimentally affect the surface coverage of MAPbI(3) layers and charge-carrier dynamics, respectively, by influencing nucleation density and by inducing nonradiative recombination. In addition, differential scanning calorimetry shows that the transition from orthorhombic to tetragonal phase occurring around 160 K requires more thermal energy for the Cs-containing MAPbI(3) systems compared to the pristine MAPbI(3). Investigation including mixed halide (I/Br) and mixed cation A-cation based compositions further confirms the absence of Rb+ from the 3D-perovskite lattice. The fundamental insights gained through this work will be of great significance to further understand highly promising perovskite compositions.}, language = {en} } @article{KapernaumLangeEbertetal.2022, author = {Kapernaum, Nadia and Lange, Alyna and Ebert, Max and Grunwald, Marco A. and H{\"a}ge, Christian and Marino, Sebastian and Zens, Anna and Taubert, Andreas and Gießelmann, Frank and Laschat, Sabine}, title = {Current topics in ionic liquid crystals}, series = {ChemPlusChem}, volume = {87}, journal = {ChemPlusChem}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2192-6506}, doi = {10.1002/cplu.202100397}, pages = {38}, year = {2022}, abstract = {Ionic liquid crystals (ILCs), that is, ionic liquids exhibiting mesomorphism, liquid crystalline phases, and anisotropic properties, have received intense attention in the past years. Among others, this is due to their special properties arising from the combination of properties stemming from ionic liquids and from liquid crystalline arrangements. Besides interesting fundamental aspects, ILCs have been claimed to have tremendous application potential that again arises from the combination of properties and architectures that are not accessible otherwise, or at least not accessible easily by other strategies. The current review highlights recent developments in ILC research, starting with some key fundamental aspects. Further subjects covered include the synthesis and variations of modern ILCs, including the specific tuning of their mesomorphic behavior. The review concludes with reflections on some applications that may be within reach for ILCs and finally highlights a few key challenges that must be overcome prior and during true commercialization of ILCs.}, language = {en} }