@article{ZhangZhangFengetal.2012, author = {Zhang, Chengjun and Zhang, Wanyi and Feng, Zhaodong and Mischke, Steffen and Gao, Xiang and Gao, Dou and Sun, Feifei}, title = {Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {323}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.01.032}, pages = {75 -- 86}, year = {2012}, abstract = {A multi-proxy study including analyses of delta C-13(org) for the lake sediment core GN-02 and grain size, TOC. CaCO3 content, delta C-13(carb) and delta O-18(carb) of bulk carbonate, and the mineralogy of the parallel core GN-04 from Gun Nuur was performed to reconstruct the Holocene hydrology and climate on the northern Mongolian Plateau. The chronology was established using 40 C-14 dates of bulk organic matter in addition to nine previously published radiocarbon dates for core GN-02, and further five C-14 dates for the new core GN-04. A lake reservoir effect of 1060 C-14 years was determined as the intercept of the high-resolution GN-02 age-depth model at the modern sediment surface. The size of the reservoir effect is supported by the age of the core-top sample (1200 +/- 40 C-14 years) and the determined difference between a wood-derived radiocarbon age from the GN-02 core base and the age-model inferred age for bulk organic matter at the same stratigraphic level (1000 C-14 years). Low lake level and prevailing aeolian sediment deposition at Gun Nuur under dry conditions were recorded during the earliest Holocene (> 10,800-10,300 cal a BP). Gun Nuur expanded under significantly wetter conditions between 10,300 and 7000 cal a BP. Unstable climate conditions existed in the mid Holocene (7000-2500 cal a BP) and three periods of low lake-levels and significantly drier conditions were recorded between 7000-5700, 4100-3600 and 3000-2500 cal a BP. Intermediate lake levels were inferred for the intervening periods. Around 2500 cal a BP, the climate change and wetter conditions were established again. As a consequence, the lake level of Gun Nuur rose again due to higher effective moisture and the relatively wet present conditions were achieved ca. 1600 cal a BP. Our results suggest that the initial Holocene climate change on the northern Mongolian Plateau was not accompanied by a rapid increase in precipitation as on the Tibetan Plateau. The establishment of wetter conditions in northern Mongolia lagged behind the early Holocene moisture increase on the Tibetan Plateau by ca. 1000 years. Subsiding dry air in the north of the Tibetan Plateau resulted from the strengthened summer monsoon on the Tibetan Plateau during the period of maximum summer insolation and probably inhibited a significant precipitation increase in Mongolia. The significant moisture increase in the Gun Nuur region at ca. 10.3 cal ka BP is probably not related to the northward shift of the present summer monsoon boundary or the moisture delivery from the northern Atlantic through the westerlies. Instead, water from melting snow, ice and frozen ground and the generation of precipitation from the local recycling of moisture are discussed as possible moisture source for the early onset of wetter conditions on the Mongolian Plateau.}, language = {en} } @article{TianHerzschuhDallmeyeretal.2013, author = {Tian, Fang and Herzschuh, Ulrike and Dallmeyer, Anne and Xu, Qinghai and Mischke, Steffen and Biskaborn, Boris K.}, title = {Environmental variability in the monsoon-westerlies transition zone during the last 1200 years - lake sediment analyses from central Mongolia and supra-regional synthesis}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {73}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.05.005}, pages = {31 -- 47}, year = {2013}, abstract = {A high resolution multi proxy (pollen, grain size, total organic carbon) record from a small mountain lake (Lake Khuisiin; 46.6 degrees N, 101.8 degrees E; 2270 m a.s.l.) in the south eastern Khangai Mountains of central Mongolia has been used to explore changes in vegetation and climate over the last 1200 years. The pollen data indicates that the vegetation changed from dry steppe dominated by Poaceae and Artemisia (ca AD 760-950), to Larix forest steppe (ca AD 950-1170), Larix Betula forest steppe (ca AD 1170-1380), meadow dominated by Cyperaceae and Poaceae (ca AD 1380-1830), and Larix Betula forest steppe (after similar to AD 1830). The cold-wet period between AD 1380 and 1830 may relate to the Little Ice Age. Environmental changes were generally subtle and climate change seems to have been the major driver of variations in vegetation until at least the early part of the 20th century, suggesting that either the level of human activity was generally low, or the relationship between human activity and vegetation did not alter substantially between AD 760 and 1830. A review of centennial scale moisture records from China and Mongolia revealed that most areas experienced major changes at ca AD 1500 and AD 1900. However, the moisture availability since AD 1500 varied between sites, with no clear regional pattern or relationship to present day conditions. Both the reconstructions and the moisture levels simulation on a millennium scale performed in the MPI Earth System Model indicate that the monsoon-westerlies transition area shows a greater climate variability than those areas influenced by the westerlies, or by the summer monsoon only.}, language = {en} }