@misc{LoksteinBetkeKrikunovaetal.2012, author = {Lokstein, Heiko and Betke, Alexander and Krikunova, Maria and Teuchner, Klaus and Voigt, Bernd}, title = {Elucidation of structure-function relationships in plant major light-harvesting complex (LHC II) by nonlinear spectroscopy}, series = {Photosynthesis research}, volume = {111}, journal = {Photosynthesis research}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0166-8595}, doi = {10.1007/s11120-011-9700-y}, pages = {227 -- 235}, year = {2012}, abstract = {Conventional linear and time-resolved spectroscopic techniques are often not appropriate to elucidate specific pigment-pigment interactions in light-harvesting pigment-protein complexes (LHCs). Nonlinear (laser-) spectroscopic techniques, including nonlinear polarization spectroscopy in the frequency domain (NLPF) as well as step-wise (resonant) and simultaneous (non-resonant) two-photon excitation spectroscopies may be advantageous in this regard. Nonlinear spectroscopies have been used to elucidate substructure(s) of very complex spectra, including analyses of strong excitonic couplings between chlorophylls and of interactions between (bacterio) chlorophylls and "optically dark'' states of carotenoids in LHCs, including the major antenna complex of higher plants, LHC II. This article shortly reviews our previous study and outlines perspectives regarding the application of selected nonlinear laser-spectroscopic techniques to disentangle structure-function relationships in LHCs and other pigment-protein complexes.}, language = {en} } @misc{LoksteinKrikunovaTeuchneretal.2011, author = {Lokstein, Heiko and Krikunova, Maria and Teuchner, Klaus and Voigt, Bernd}, title = {Elucidation of structure-function relationships in photosynthetic light-harvesting antenna complexes by non-linear polarization spectroscopy in the frequency domain (NLPF)}, series = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, volume = {168}, journal = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, number = {12}, publisher = {Elsevier}, address = {Jena}, issn = {0176-1617}, doi = {10.1016/j.jplph.2010.12.012}, pages = {1488 -- 1496}, year = {2011}, abstract = {Photosynthetically active pigments are usually organized into pigment-protein complexes. These include light-harvesting antenna complexes (LHCs) and reaction centers. Site energies of the bound pigments are determined by interactions with their environment, i.e., by pigment-protein as well as pigment-pigment interactions. Thus, resolution of spectral substructures of the pigment-protein complexes may provide valuable insight into structure-function relationships. By means of conventional (linear) and time-resolved spectroscopic techniques, however, it is often difficult to resolve the spectral substructures of complex pigment-protein assemblies. Nonlinear polarization spectroscopy in the frequency domain (NLPF) is shown to be a valuable technique in this regard. Based on initial experimental work with purple bacterial antenna complexes as well as model systems NLPF has been extended to analyse the substructure(s) of very complex spectra, including analyses of interactions between chlorophylls and "optically dark" states of carotenoids in LHCs. The paper reviews previous work and outlines perspectives regarding the application of NLPF spectroscopy to disentangle structure-function relationships in pigment-protein complexes.}, language = {en} }