@article{DraudeGallaPelsteretal.2013, author = {Draude, F. and Galla, S. and Pelster, Axel and Tentschert, J. and Jungnickel, H. and Haase, Alfred and Mantion, Alexandre and Thuenemann, Andreas F. and Taubert, Andreas and Luch, A. and Arlinghaus, H. F.}, title = {ToF-SIMS and Laser-SNMS analysis of macrophages after exposure to silver nanoparticles}, series = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, volume = {45}, journal = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0142-2421}, doi = {10.1002/sia.4902}, pages = {286 -- 289}, year = {2013}, abstract = {Silver nanoparticles (SNPs) are among the most commercialized nanoparticles because of their antibacterial effects. Besides being employed, e. g. as a coatingmaterial for sterile surfaces in household articles and appliances, the particles are also used in a broad range of medical applications. Their antibacterial properties make SNPs especially useful for wound disinfection or as a coating material for prostheses and surgical instruments. Because of their optical characteristics, the particles are of increasing interest in biodetection as well. Despite the widespread use of SNPs, there is little knowledge of their toxicity. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (Laser-SNMS) were used to investigate the effects of SNPs on human macrophages derived from THP-1 cells in vitro. For this purpose, macrophages were exposed to SNPs. The SNP concentration ranges were chosen with regard to functional impairments of the macrophages. To optimize the analysis of the macrophages, a special silicon wafer sandwich preparation technique was employed; ToF-SIMS was employed to characterize fragments originating from macrophage cell membranes. With the use of this optimized sample preparation method, the SNP-exposed macrophages were analyzed with ToF-SIMS and with Laser-SNMS. With Laser-SNMS, the three-dimensional distribution of SNPs in cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. We found an accumulation of SNPs directly beneath the cell membrane in a nanoparticular state as well as agglomerations of SNPs inside the cells.}, language = {en} } @phdthesis{DokhtDolatabadiEsfahani2022, author = {Dokht Dolatabadi Esfahani, Reza}, title = {Time-dependent monitoring of near-surface and ground motion modelling: developing new data processing approaches based on Music Information Retrieval (MIR) strategies}, doi = {10.25932/publishup-56767}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567671}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 107}, year = {2022}, abstract = {Seismology, like many scientific fields, e.g., music information retrieval and speech signal pro- cessing, is experiencing exponential growth in the amount of data acquired by modern seismo- logical networks. In this thesis, I take advantage of the opportunities offered by "big data" and by the methods developed in the areas of music information retrieval and machine learning to predict better the ground motion generated by earthquakes and to study the properties of the surface layers of the Earth. In order to better predict seismic ground motions, I propose two approaches based on unsupervised deep learning methods, an autoencoder network and Generative Adversarial Networks. The autoencoder technique explores a massive amount of ground motion data, evaluates the required parameters, and generates synthetic ground motion data in the Fourier amplitude spectra (FAS) domain. This method is tested on two synthetic datasets and one real dataset. The application on the real dataset shows that the substantial information contained within the FAS data can be encoded to a four to the five-dimensional manifold. Consequently, only a few independent parameters are required for efficient ground motion prediction. I also propose a method based on Conditional Generative Adversarial Networks (CGAN) for simulating ground motion records in the time-frequency and time domains. CGAN generates the time-frequency domains based on the parameters: magnitude, distance, and shear wave velocities to 30 m depth (VS30). After generating the amplitude of the time-frequency domains using the CGAN model, instead of classical conventional methods that assume the amplitude spectra with a random phase spectrum, the phase of the time-frequency domains is recovered by minimizing the observed and reconstructed spectrograms. In the second part of this dissertation, I propose two methods for the monitoring and characterization of near-surface materials and site effect analyses. I implement an autocorrelation function and an interferometry method to monitor the velocity changes of near-surface materials resulting from the Kumamoto earthquake sequence (Japan, 2016). The observed seismic velocity changes during the strong shaking are due to the non-linear response of the near-surface materials. The results show that the velocity changes lasted for about two months after the Kumamoto mainshock. Furthermore, I used the velocity changes to evaluate the in-situ strain-stress relationship. I also propose a method for assessing the site proxy "VS30" using non-invasive analysis. In the proposed method, a dispersion curve of surface waves is inverted to estimate the shear wave velocity of the subsurface. This method is based on the Dix-like linear operators, which relate the shear wave velocity to the phase velocity. The proposed method is fast, efficient, and stable. All of the methods presented in this work can be used for processing "big data" in seismology and for the analysis of weak and strong ground motion data, to predict ground shaking, and to analyze site responses by considering potential time dependencies and nonlinearities.}, language = {en} } @article{RudolphMohrToetzkeKardjilovetal.2017, author = {Rudolph-Mohr, Nicole and Toetzke, Christian and Kardjilov, Nikolay and Oswald, Sascha Eric}, title = {Mapping water, oxygen, and pH dynamics in the rhizosphere of young maize roots}, series = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, volume = {180}, journal = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1436-8730}, doi = {10.1002/jpln.201600120}, pages = {336 -- 346}, year = {2017}, abstract = {Rhizosphere processes are highly dynamic in time and space and strongly depend on each other. Key factors influencing pH changes in the rhizosphere are root exudation, respiration, and nutrient supply, which are influenced by soil water content levels. In this study, we measured the real-time distribution of soil water, pH changes, and oxygen distribution in the rhizosphere of young maize plants using a recently developed imaging approach. Neutron radiography was used to capture the root system and soil water distribution, while fluorescence imaging was employed to map soil pH and soil oxygen changes. Germinated seeds of maize (Zea mays L.) were planted in glass rhizotrons equipped with pH and oxygen-sensitive sensor foils. After 20 d, the rhizotrons were wetted from the bottom and time-lapsed images via fluorescence and neutron imaging were taken during the subsequent day and night cycles for 5 d. We found higher water content and stronger acidification in the first 0.5 mm from the root surface compared to the bulk soil, which could be a consequence of root exudation. While lateral roots only slightly acidified their rhizosphere, crown roots induced stronger acidification of up to 1 pH unit. We observed changing oxygen patterns at different soil moisture conditions and increasing towards lateral as well as crown roots while extending laterally with ongoing water logging. Our work indicates that plants alter the rhizosphere pH and oxygen also depending on root type, which may indirectly arise also from differences in age and water content changes. The results presented here were possible only by combining different imaging techniques to examine profiles at the root-soil interface in a comprehensive way during wetting and drying.}, language = {en} } @article{WangFritzschBernardingetal.2013, author = {Wang, Jing and Fritzsch, Claire and Bernarding, Johannes and Krause, Thomas and Mauritz, Karl-Heinz and Brunetti, Maddalena and Dohle, Christian}, title = {Cerebral activation evoked by the mirror illusion of the hand in stroke patients compared to normal subjects}, series = {Neurorehabilitation : an interdisciplinary journal}, volume = {33}, journal = {Neurorehabilitation : an interdisciplinary journal}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1053-8135}, doi = {10.3233/NRE-130999}, pages = {593 -- 603}, year = {2013}, abstract = {BACKGROUND: Mirror therapy (MT) was found to improve motor function after stroke, but its neural mechanisms remain unclear, especially in single stroke patients. OBJECTIVES: The following imaging study was designed to compare brain activation patterns evoked by the mirror illusion in single stroke patients with normal subjects. METHODS: Fifteen normal volunteers and five stroke patients with severe arm paresis were recruited. Cerebral activations during movement mirroring by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Single-subject analysis was performed using SPM 8. RESULTS: For normal subjects, ten and thirteen subjects displayed lateralized cerebral activations evoked by the mirror illusion while moving their right and left hand respectively. The magnitude of this effect in the precuneus contralateral to the seen hand was not dependent on movement speed or subjective experience. Negative correlation of activation strength with age was found for the right hand only. The activation pattern in stroke patients is comparable to that of normal subjects and present in four out of five patients. CONCLUSIONS: In summary, the mirror illusion can elicit cerebral activation contralateral to the perceived hand in the majority of single normal subjects, but not in all of them. This is similar even in stroke patients with severe hemiparesis.}, language = {en} } @article{StangeHintscheSachseetal.2017, author = {Stange, Maike and Hintsche, Marius and Sachse, Kirsten and Gerhardt, Matthias and Valleriani, Angelo and Beta, Carsten}, title = {Analyzing the spatial positioning of nuclei in polynuclear giant cells}, series = {Journal of Physics D: Applied Physics}, volume = {50}, journal = {Journal of Physics D: Applied Physics}, number = {46}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0022-3727}, doi = {10.1088/1361-6463/aa8da0}, pages = {8}, year = {2017}, abstract = {How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum. Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug.}, language = {en} } @article{ObrehtWoermerBraueretal.2020, author = {Obreht, Igor and W{\"o}rmer, Lars and Brauer, Achim and Wendt, Jenny and Alfken, Susanne and De Vleeschouwer, David and Elvert, Marcus and Hinrichs, Kai-Uwe}, title = {An annually resolved record of Western European vegetation response to Younger Dryas cooling}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {231}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2020.106198}, pages = {15}, year = {2020}, abstract = {The regional patterns and timing of the Younger Dryas cooling in the North Atlantic realm were complex and are mechanistically incompletely understood. To enhance understanding of regional climate patterns, we present molecular biomarker records at subannual to annual resolution by mass spectrometry imaging (MSI) of sediments from the Lake Meerfelder Maar covering the Allerod-Younger Dryas transition. These analyses are supported by conventional extraction-based molecular-isotopic analyses, which both validate the imaging results and constrain the sources of the target compounds. The targeted fatty acid biomarkers serve as a gauge of the response of the local aquatic and terrestrial ecosystem to climate change. Based on the comparison of our data with existing data from Meerfelder Maar, we analyse the short-term environmental evolution in Western Europe during the studied time interval and confirm the previously reported delayed hydrological response to Greenland cooling. However, despite a detected delay of Western European environmental change of similar to 135 years, our biomarker data show statistically significant correlation with deuterium excess in Greenland ice core at - annual resolution during this time-transgressive cooling. This suggests a coherent atmospheric forcing across the North Atlantic realm during this transition. We propose that Western European cooling was postponed due to major reorganization of the westerlies that were intermittently forcing warmer and wetter air masses from lower latitudes to Western Europe and thus resulted in delayed cooling relative to Greenland.}, language = {en} } @article{OlasFichtnerApelt2020, author = {Olas, Justyna Jadwiga and Fichtner, Franziska and Apelt, Federico}, title = {All roads lead to growth}, series = {Journal of experimental botany}, volume = {71}, journal = {Journal of experimental botany}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erz406}, pages = {11 -- 21}, year = {2020}, abstract = {Plant growth is a highly complex biological process that involves innumerable interconnected biochemical and signalling pathways. Many different techniques have been developed to measure growth, unravel the various processes that contribute to plant growth, and understand how a complex interaction between genotype and environment determines the growth phenotype. Despite this complexity, the term 'growth' is often simplified by researchers; depending on the method used for quantification, growth is viewed as an increase in plant or organ size, a change in cell architecture, or an increase in structural biomass. In this review, we summarise the cellular and molecular mechanisms underlying plant growth, highlight state-of-the-art imaging and non-imaging-based techniques to quantitatively measure growth, including a discussion of their advantages and drawbacks, and suggest a terminology for growth rates depending on the type of technique used.}, language = {en} }