@article{deJongKukrejaTrabantetal.2013, author = {de Jong, S. and Kukreja, R. and Trabant, C. and Pontius, N. and Chang, C. F. and Kachel, T. and Beye, Martin and Sorgenfrei, Florian and Back, C. H. and Braeuer, B. and Schlotter, W. F. and Turner, J. J. and Krupin, O. and Doehler, M. and Zhu, D. and Hossain, M. A. and Scherz, A. O. and Fausti, D. and Novelli, F. and Esposito, M. and Lee, W. S. and Chuang, Y. D. and Lu, D. H. and Moore, R. G. and Yi, M. and Trigo, M. and Kirchmann, P. and Pathey, L. and Golden, M. S. and Buchholz, Marcel and Metcalf, P. and Parmigiani, F. and Wurth, W. and F{\"o}hlisch, Alexander and Schuessler-Langeheine, Christian and Duerr, H. A.}, title = {Speed limit of the insulator-metal transition in magnetite}, series = {Nature materials}, volume = {12}, journal = {Nature materials}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/NMAT3718}, pages = {882 -- 886}, year = {2013}, abstract = {As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown(1), magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible(2-8). Recently, three- Fe- site lattice distortions called trimeronswere identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase(9). Here we investigate the Verwey transition with pump- probe X- ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two- step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 +/- 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics(10).}, language = {en} } @article{PontiusBeyeTrabantetal.2018, author = {Pontius, Niko and Beye, Martin and Trabant, Christoph and Mitzner, Rolf and Sorgenfrei, Florian and Kachel, Torsten and Woestmann, Michael and Roling, Sebastian and Zacharias, Helmut and Ivanov, Rosen and Treusch, Rolf and Buchholz, Marcel and Metcalf, Pete and Schuessler-Langeheine, Christian and F{\"o}hlisch, Alexander}, title = {Probing the non-equilibrium transient state in magnetite by a jitter-free two-color X-ray pump and X-ray probe experiment}, series = {Structural dynamics}, volume = {5}, journal = {Structural dynamics}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.5042847}, pages = {8}, year = {2018}, abstract = {We present a general experimental concept for jitter-free pump and probe experiments at free electron lasers. By generating pump and probe pulse from one and the same X-ray pulse using an optical split-and-delay unit, we obtain a temporal resolution that is limited only by the X-ray pulse lengths. In a two-color X-ray pump and X-ray probe experiment with sub 70 fs temporal resolution, we selectively probe the response of orbital and charge degree of freedom in the prototypical functional oxide magnetite after photoexcitation. We find electronic order to be quenched on a time scale of (30 +/- 30) fs and hence most likely faster than what is to be expected for any lattice dynamics. Our experimental result hints to the formation of a short lived transient state with decoupled electronic and lattice degree of freedom in magnetite. The excitation and relaxation mechanism for X-ray pumping is discussed within a simple model leading to the conclusion that within the first 10 fs the original photoexcitation decays into low-energy electronic excitations comparable to what is achieved by optical pump pulse excitation. Our findings show on which time scales dynamical decoupling of degrees of freedom in functional oxides can be expected and how to probe this selectively with soft X-ray pulses. Results can be expected to provide crucial information for theories for ultrafast behavior of materials and help to develop concepts for novel switching devices. (C) 2018 Author(s).}, language = {en} }